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PREFACE

The National Center for Education Statistics (NCES), through the Education
Statistics Services Institute, supported the research in this report to promote further
exploration of the 1995 Third International Mathematics and Science Study (TIMSS)
data. Specifically, NCES commissioned this work to investigate classroom-level effects
associated with differences in assessment performance in TIMSS. Some of the issues
concerning the sample design of TIMSS pointed out by the authors were known
beforehand; others are brought to light through the analyses documented in this paper.

In 1999, the International Association for the Evaluation of Educational
Achievement (IEA) conducted a repeat of TIMSS (known as TIMSS-R), using the same
methods, frameworks, and documentation procedures as in the 1995 TIMSS.  Some
changes were made to better document data collection and quality issues.  However,
TIMSS-R was essentially a repeat of TIMSS.  Thus, many of the recommendations
identified by the authors of this paper could not be taken into consideration in the design
of TIMSS-R.  For example, the TIMSS-R international guidelines continued to specify a
minimum of one intact classroom per sampled school despite the possible advantages of
sampling a minimum of two intact classrooms per school as recommended by the
authors.

Research such as the work presented here will, nonetheless, continue to assist
NCES in improving its own studies and in making data-based recommendations to our
partners around the world in the best methods for collecting comparable data in future
studies.

Finally, this work was conducted under Task Order 1.2.77.1 with the Education
Statistics Services Institute, funded by contract number RN95127001 from the National
Center for Education Statistics.  The opinions expressed here are solely those of the
authors and do not necessarily represent the views of the Education Statistics Services
Institute, the National Center for Education Statistics, or the U.S. Department of
Education.

Eugene Owen Valena Plisko
Program Director Associate Commissioner
International Activities Program Early Childhood, International and

Crosscutting Studies Division
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EXECUTIVE SUMMARY

Although international comparisons of average student performance are a staple

of U.S. educational debate, little attention has been paid to cross-national differences in

the variability of performance.  It is often assumed that the performance of U.S. students

is unusually variable or that the distribution of U.S. scores is left-skewed – that is, that it -

has an unusually long ‘tail’ of low-scoring students – but data from international studies

are rarely brought to bear on these questions.  This study used data from the Third

International Mathematics and Science Study (TIMSS) to compare the variability of

performance in the U.S. and several other countries, investigate how this performance

variation is distributed within and between classrooms, and explore how well background

variables predict performance at both levels.  In addition, the study explored how well

suited the TIMSS design is to addressing questions of this sort.

TIMSS shows that the U.S. is not anomalous in terms of the amount, distribution,

or prediction of performance variation.  Nonetheless, some striking differences appear

between countries that are potentially important for both research and policy.

TIMSS reports show that in both grades 4 and 8, U.S. performance variability was

near the median of a large sample of nations in mathematics and near the top (but not an

outlier) in science (Beaton, et al., 1996a, 1996b; Martin, et al., 1997; Mullis, et al., 1997).

Moreover, the U.S. distribution of scores is not left-skewed.  For example, in grade 8

mathematics, U.S. scores show a modest right-hand skew and are less variable than those

of Korea (Summary Figure 1).
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Summary Figure 1.—Distributions of Mathematics Scores, Grade  8, Korea and U.S.: 1995

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

Our analyses focused primarily on mathematics in the upper grade of Population 2

(grade 8) in seven countries: the United States, Australia, France, Germany, Hong Kong, Korea,

and Japan.  Of these, only France (standard deviation = 76) showed appreciably less variability

of performance than the U.S. (standard deviation = 91).  Germany was comparable to the U.S. in

variability, and the other countries all had more variability of performance, ranging up to Korea’s

standard deviation of 109.

Although all of our countries other than France had reasonably similar score variance in

eighth grade mathematics, the distribution of that variance within and between classrooms

differed markedly.  In the U.S., Germany, Hong Kong, and Australia, between 42 and 47 percent

of score variance was between classrooms (Summary Table 1).  At the other extreme, Japan and

Korea both had less than 10 percent of score variance between classrooms.  France was in

between these extremes, with 27 percent of the score variance between classrooms.  Thus, Japan

and Korea, which had slightly more overall score variation than the U.S. in eighth grade
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mathematics, had considerably more heterogeneity within the average classroom than the U.S.

but showed substantially less variation among classrooms.

Summary Table 1: Percent of Variance Within and Between Classrooms,
Grade 8 Mathematics: 1995

Country Percent
Between

Percent Within

Australia 47 53
France 27 73
Germany 45 55
Hong Kong 46 54
Japan 8 92
Korea 6 94
U.S. 42 58

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

Predictors of performance in the U.S., France, Hong Kong, and Korea were analyzed

using a two-level hierarchical model in which classrooms were the second level.  The sampling

design of TIMSS included only a single classroom per school in most countries and thus

precluded analyzing schools to separate variation between schools from the total variation

between classrooms.  Predictors at both levels included presence of father in the home, presence

of grandparents in the home, number of books in the home, presence of computer in the home,

mother’s and father’s educational attainment, press for achievement, whether the student was

born in the country of testing, and student’s age.  Numerous potentially important predictors,

such as family income, ethnicity, region, and urban location, are not available in TIMSS, and

others were dropped because exploratory data analysis revealed problems in one or more

countries.  Educational variables were not included in the models.

In all four countries, the final models, which included only subsets of these variables,

predicted most of the between-classroom score variance but very little of the within-classroom

variance (Summary Table 2).  Korea was the only country in which the models predicted more

than 5 percent of the within-classroom variance in scores.  The consistently strong prediction of

between-classroom variance is all the more striking in the light of the sparseness of our models

and the relatively weak measurement of social background in TIMSS.
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Summary Table 2.—Percent of Variance at Each Level Predicted by
Final Models, Grade 8 Mathematics: 1995

Between
Classroom

Within
Classroom

United States 77 4
France 59 5
Hong Kong 69 1
Korea 94 13

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

A somewhat different picture emerges when one asks how well the models predict total

score variance in each country.  This is affected not only by the within-level prediction

(Summary Table 2), but also by the percentage of total variance found at each level (Summary

Table 1).  In this respect, the U.S. and Hong Kong are similar; in both, about one-third of the

total variance in scores is predicted by the model, and almost all of this prediction is attributable

to between-classroom differences in background variables (Summary Table 3).  Korea shows a

very different pattern: only 19 percent of total score variance is predicted by the model, and most

of this most of this is attributable to within-classroom variables.  The unusually strong prediction

of within-classroom variance in Korea appears to reflect stronger relationships between scores

and background variables within classrooms; the within-classroom variability of the predictors

was similar in Korea and the U.S., and the within-classroom parameter estimates were markedly

larger in Korea.  France is similar to Korea in terms of the total variance predicted, but as in the

U.S. and Hong Kong, the prediction is primarily due to between-classroom variables.

Summary Table 3.— Percent of Total Variance Predicted by Predictors at Each Level,
Final Models, Grade 8 Mathematics: 1995

Between
Classroom

Within
Classroom

Both
Levels

United States 31 2 34
France 14 3 18
Hong Kong 31 1 32
Korea 7 12 19

NOTE: Entries may not sum to totals because of rounding.

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)
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The final selection of variables and the parameter estimates differed among these four

countries, but for several reasons, we place less confidence in these specific aspects of the

models and focus primarily on the prediction of variance.  The fit of the models appeared fairly

insensitive to the specific choice of variables, and a more extensive or stronger set of background

variables might have yielded substantially different parameter estimates.

Thus, in some instances, countries differ more in terms of the structure and prediction of

performance variance than in the simple amount of variance.  These differences raise several

interesting questions.  Why is the partitioning and prediction of score variance so different in

Korea than in the other three countries?  Why does Hong Kong, which resembles Korea and

Japan in terms of its mean level of performance, resemble the U.S. rather than Korea or Japan in

terms of the partitioning and prediction of score variance?  Why does France show relatively

little total and predicted variance between classrooms?

TIMSS does not provide a clear explanation of these differences, but they suggest

hypotheses that warrant further investigation.  The differences between Korea and the United

States, for example, could be caused by differences in stratification.  Korea does not track

students in grade 8, and the very small percentage of score variance that lies between classrooms

suggests that stratification of school attendance areas may also be much less pronounced than in

the U.S.  As a result, more of the relevant variance in background factors — that is, more of the

variance that predicts mathematics performance — might lie within classrooms in Korea than in

the U.S. or Hong Kong.  Instructional differences among countries, for example, differences in

the similarity of curricula across schools, could also contribute to patterns found here.  For

example, some observers argue that France has an especially uniform curriculum and rigid

promotion policies; if that were true, it might contribute to the lesser variation between

classrooms and the weaker relationship of that variation to background variables.

This study represents a first step in cross-national study of performance variation.

Further analysis of TIMSS might shed additional light on these questions.  For example, it might

be informative to carry out multi-level models using both background variables and schooling

variables as predictors.  However, even more extensive analysis of TIMSS will leave many

important questions unanswered.  The design of a survey necessarily requires tradeoffs among

uses of the data, and some aspects of the TIMSS design impose serious constraints on

comparative analysis of performance variation.  For example, in most TIMSS countries, TIMSS
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sampled only one mathematics class per school, which makes it impossible to separate

mathematics variation between classes within schools (which might be caused by tracking) from

variation between schools (which could be caused by residential class segregation or disparities

in resources).  In science, the TIMSS data do not even permit decomposing variance into within-

and between-classroom components.  The TIMSS database also includes a relatively weak set of

variables pertaining to student background and stratification.  Accordingly, adequately some of

the questions raised by the current research may require additional data.
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INTRODUCTION

International comparisons of average student performance are widely discussed by

policymakers and the press and have had a powerful influence on educational debate and policy

in the U.S.  In an era when traditional norm-referenced reporting of student performance has

gone out of favor, “country norms” have become increasingly important. International

comparisons are widely used to indicate the degree of success of U.S. education and the levels of

performance to which this country should aspire.  To some degree, international comparisons

play the role that trends in the performance of U.S. students played a decade or more ago: they

serve as a central indicator of student achievement, providing a framework for understanding

U.S. performance and an impetus for education reform.  The publication of the results of the

Third International Mathematics and Science Study (TIMSS) since 1996 (Beaton, et al., 1996a,

1996b; Mullis, et al., 1997, 1998) has increased further the prominence of international

comparisons in the U.S. debate.

Much of the discussion of international comparisons has focused on horse-race

comparisons of means or medians.  Although presented in TIMSS reports, information on the

variability of student performance has usually been ignored in the U.S. debate or has been used

in a lopsided and potentially misleading fashion.  Typically, when information about the

variability of performance has been discussed, the variability in the U.S. has been considered,

while the variability in the countries to which the U.S. is compared has been ignored.  For

example, earlier this decade, the results of the 1991 International Assessment of Educational

Progress (IAEP) were projected onto the scale of the National Assessment of Educational

Progress (NAEP), permitting comparison of countries participating in IAEP to states

participating in the 1992 NAEP Trial State Assessment in mathematics.  These comparisons,

which have been widely cited, showed that the highest-scoring U.S. states, such as Iowa and

North Dakota, had mean scores similar to those of the highest-scoring countries, such as Taiwan

and Korea (National Center for Education Statistics, 1996, Figure 25).  High-scoring regions in

Taiwan and Korea, however, were not compared to the U.S. mean.  In 1997, the President and

the press gave much attention to the fact that a group of suburban Chicago districts that

administered the TIMSS instruments separately, known as the First in the World Consortium,
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had means similar to those of some of the highest-scoring countries, such as Korea.  Again, high-

scoring Korean districts were not compared to the U.S. average.

Underlying some of these comparisons appears to be an expectation that the variability of

student performance is atypically large in the U.S.  Indeed, some observers have made this

expectation explicit.  For example, Berliner and Biddle, in disparaging the utility of international

comparisons of mean performance, wrote:

“The achievement of American schools is a lot more variable than is student

achievement from elsewhere….To put it baldly, American now has some of the

finest, highest-achieving schools in the world—and some of the most miserable,

threatened, underfunded educational travesties, which would fail by any

achievement standard” (1995, p. 58, emphasis in the original).

To buttress this assertion, they cited the NCES comparisons of U.S. states and foreign nations

noted above, which did not display the variation of performance in other countries.

Depending on the variability of student performance in the nations to which the U.S. is

compared, however, such comparisons may be fundamentally misleading.  One needs to examine

three aspects of the variability of student performance to understand comparisons of this sort:

• How large is the variability of performance in the countries to be compared?  Is

performance is much more variable in the U.S. than in many other nations?

• Does the student-level distribution of performance differ across countries in other

respects?  For example, if the distribution of performance were left-skewed (that is,

showing a longer tail of unusually low-scoring students) in the U.S. but not in a

second country, the U.S. mean would be pulled downward, and a comparison of mean

scores in the two countries could be misleading.

• How is the variability of performance distributed across aggregates, such as schools,

districts, or states?  Are there differences in the clustering of students with similar

performance?  For example, are low-scoring students in the U.S. more concentrated

in certain schools, districts, or states or regions than are similar students in some other

nations?

In addition, it would be informative to explore the correlates of performance at both the

individual and the aggregate levels.  For example, background factors might explain more of the

variability among schools or classrooms in one country than in another.
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The third issue above, the question of clustering, can greatly influence the inferences that

are warranted by international comparisons.  For example, assume that the U.S. and several other

countries have similar variability of performance at the level of students but that students in the

U.S. are more highly clustered with students of similar performance.  In that case, despite the

similar variability at the level of students, the means of U.S. schools would be more variable than

those in other countries, much as Berliner and Biddle (1995) argued.  To take another example, if

students in a second country are as highly clustered into high- and low-performing districts or

states than are students in the U.S., than those areas in the other countries will also vary

markedly, and comparisons between U.S. districts and the mean of the second nation would be

potentially misleading.

Research Questions

This study was undertaken to explore the variability of performance in several countries.

It had two goals: (1) to obtain substantive information about the variability of performance and

its correlates, and (2) to explore the strengths and limitations of TIMSS for comparative analysis

of performance variability.  We anticipated that the study would result in suggestions for

possible changes to TIMSS and suggestions for future secondary analysts.  It has also resulted in

some methodological refinements that can be adapted by other analysts.

The study was initially limited to Population 1 (elementary school) and Population 2

(middle school).  Population 3 data were not available when the study was undertaken, and

Population 3 presents substantial complications (e.g., because of differences in population

definitions and coverage) beyond those posed by Populations 1 and 2.  We focused primarily on

Population 2 because of doubts about the validity and utility of self-report data from elementary

school students.1  Our analyses focused on the highest grade in each Population (grade 4 in

Population 1 and grade 8 in Population 2), although some analyses were replicated in the lower

grade as well.

                                                
1 A number of studies have shown that even older students often provide reports of background variables that are
inconsistent with those of their parents.  For example, Kaufman and Rasinski (1991) showed that only roughly 60
percent of eighth-grade students in the National Education Longitudinal Study (NELS-88) agreed with their parents
about their parents’ educational attainment (Kaufman and Rasinski, 1991, Table 3.2).  A study of Asian and
Hispanic students in NAEP found similar results for middle-school students but found that fewer than half of third-
grade students agreed with their parents on this variable (Baratz-Snowden, Pollack, and Rock, 1988).
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We initially selected seven countries for our analysis: the U.S., Japan, Hong Kong,

Korea, Germany, France, and Australia.  We selected Japan and Korea because they are often

used as examples of high-performing countries in comparisons with the U.S.  Germany was

included because it is often noted in discussions of the competitiveness of the U.S. workforce.

Hong Kong was included because it has both parallels with and interesting differences from

Japan and Korea.  France was included because in eighth-grade mathematics, it showed an

unusually small variance of performance.  Australia was included primarily for methodological

reasons.  (The Australian sample, as noted below, shares one important characteristic with that of

the U.S.)  Data limitations, however, including missing data and apparent response bias, led us to

narrow our focus substantially.

In the end, our most intensive work focused primarily on Population 2 mathematics in the

U.S., France, Hong Kong, and Korea.  Decomposition of performance variation was not feasible

in science in Population 2 because of the construction of the sample.  Students were selected for

the science assessment based on the mathematics classes they attended rather than the science

classes (Foy, Rust, and Shleicher, 1996, p. 4-7); in several of our countries, the number of

science classrooms per school was highly variable and often large, making it impossible to

partition variance into within- and between-classroom components.

Among the questions addressed by the analyses are these:

• How large is the performance variation in our sample countries, and how is this

variation distributed between and within classrooms?

• How adequate are TIMSS background variables for analyzing performance variation?

• How well do background variables predict performance variation in our countries,

both within and between classrooms?

• How consistent are the results of these analyses with other findings from U.S. data?
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METHODS

One ideally would want at least three levels in a model of the relationships between

background variables and test scores: within classrooms, between classrooms within schools, and

between schools.  Relationships at the between-school and between-classroom, within-school

levels could represent different processes and could have substantially different implications for

policy and practice.  For example, a decision to track students on the basis of ability would

increase the variance between classrooms within schools while decreasing the variance within

classrooms, but it would not directly affect the variance between schools.  Conversely,

residential segregation on the basis of social class would increase performance variance between

schools, but it could decrease the variance between classrooms within schools by making schools

more homogeneous with respect to achievement.

In all countries other than the U.S., Australia, and Cyprus, however, the TIMSS sample

consisted of a single classroom per school.   Therefore, in most countries, one can only specify a

two-level model in which variations in performance between schools and between classrooms

within schools are completely confounded.  In the U.S. and Australia, a second classroom was

sampled in most schools, and additional classrooms beyond the second were sampled in a small

number of schools.  This permits estimating a three-level model that separates between-school

relationships from within-school, between classroom relationships.  This sampling, however,

provides only a limited view of within-school, between-classroom relationships and cannot be

compared to results in any other country.

Accordingly, we sacrificed some of the richness of the U.S. and Australia data in order to

obtain results from those countries comparable to the results from others.

We did this by creating subsamples of the U.S. and Australia samples that consisted of a single

classroom per school, randomly selected from the multiple classrooms in the original sample.

For brevity, these samples are labeled “1 CPS” in this report.  All results in this report reflect

these one-classroom-per-school samples unless noted otherwise.

The reported analyses were weighted using sample weights unless noted otherwise.  The

procedure we used to weight intermediate statistics (e.g., when we first calculated a weighted

mean for a unit and then calculated the weighted distribution of the weighted means) is described
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in Appendix F.  We modified weights and jackknife replicates for the U.S. and Australia to

account for the additional sampling when we used the 1 CPS samples.

Our analyses followed the same course in each country and extended from simple

exploratory data analysis (EDA) to hierarchical modeling.  Extensive EDA was used to explore

individual-level and classroom-level variations in performance and background variables, to

determine whether background variables showed sufficient variability to be usable in analysis, to

determine whether the relationships between background variables and performance appeared

sensible, and to decide whether and how to categorize variables.  The patterns uncovered by this

EDA substantially constrained our analyses in several instances.  Illustrative examples of this

EDA are presented below.

The performance measure used in all analyses was BIMATSCR, the “international

mathematics achievement score” (Gonzalez, Smith, et al., 1997) used in TIMSS published

reports for Population 2.  Technically, BIMATSCR is not a score in the traditional sense, but it is

labeled a score here for simplicity.  TIMSS was designed to provide aggregate estimates but not

scores for individual students.  In lieu of scores, TIMSS provides for each student five plausible

values, which are “random draws from the estimated ability distribution of students with similar

item response patterns and background characteristics” (Gonzalez, Smith, et al., 1997, p. 5-1).  In

this respect, TIMSS followed a variant of the procedures NAEP has used since 1984.  In the case

of Population 2, however, scores were conditioned only on country, gender, and class mean, not

on background variables (Gonzalez, 1998).  In theory, the variance of repeated estimates using

different plausible values should be added to the sampling variance to obtain an estimate of error

variance for statistics calculated with plausible values.  However, Gonzalez, Smith, et al. (1997,

p. 5-8) report that the intercorrelations among TIMSS plausible values are so high that this error

component can be ignored.  It was not calculated for statistics reported in this paper.

The total score variance in each of our seven countries was then decomposed into two

components: within-classroom and between-classroom.  The within-classroom component

represents variation of students’ scores around their classroom means.  The between-classroom

component represents the variation of classroom means around the grand mean for the country.

This decomposition was carried out with no modeling of background variables in order to make

the decompositions entirely comparable across the seven nations (which had differing numbers

of variables available).
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Simple bivariate relationships between performance and background variables were

examined for all of the variables considered for the models.  These were carried out three ways

because of the inherently hierarchical nature of the data: (1) student-level uncentered (i.e., simple

student-level analyses without regard to classrooms); (2) student-level, centered on classroom

means (corresponding to the within-classroom component of variance); and (3) classroom level

(corresponding to the between-classroom component of variance).

Simple OLS regression analyses predicting performance from background factors were

carried out for several purposes.  For example, they were used to test the adequacy of

imputations of missing values (imputation was rejected as a result) and to help shape and

interpret multi-level analyses.  The substantive multivariate results presented in this report,

however, all reflect multilevel models.

Multilevel models were originally carried out using HLM software (Bryk, Raudenbush,

and Congdon, 1996).  However, HLM does not properly handle the weights required by the

complex TIMSS sample design (see Appendix D).  Accordingly, the primary results of

multilevel modeling reported here were generated using SAS macros written to use the methods

suggested by Pfefferman, et al. (1998).  The models are described in more detail in a later

section.
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STUDENT-LEVEL DISTRIBUTIONS OF PERFORMANCE IN TIMSS

Basic information pertaining to the first of the four research questions noted above—the

size of the performance variation in participating countries, analyzed at the level of students

without regard to aggregation—is provided in TIMSS publications.  Appendices to the reports

provide standard deviations and selected percentiles (5th, 25th, 50th, 75th, and 95th) of the

performance distributions (Beaton et al., 1996a and 1996b, Appendix E; Mullis, et al., 1997,

Appendix C; Martin et al., 1997, Appendix C).

At the level of individual students, the TIMSS results in Populations 1 and 2 do not

indicate that the achievement of U.S. students is atypically variable.  In mathematics in both

grades, the variability of performance was near the median.  In science, the U.S. variability was

near the top of the distribution but was not an outlier.  This does not directly address Berliner and

Biddle’s assertion about the variability of schools ; to do so would require a decomposition of the

performance variance into within- and between-school components.

Differences across grades and subjects in these results, however, underscore the riskiness

of generalizing about cross-national differences in the variability of student performance.  The

disparity across subjects in the ranking of the U.S. is only one of numerous inconsistencies

across the four grades-by-subject combinations considered here. The reasons for these disparities

are not clear.  They could stem, for example, from characteristics of the tests, in which case a

different set of tests could rank countries differently in terms of performance variation.

Among the 31 countries that met the TIMSS sampling requirements for the eighth grade

(see Beaton, et al., 1996a, Table 2.1), the variability of mathematics performance in the U.S. was

unexceptional.  The country-level standard deviations varied greatly, from 58 to 110, but the

standard deviations in half of the countries were clustered in the narrow range from 84 to 92.

The median standard deviation across the 31 countries was 88.  The standard deviation of the

U.S. sample was 91 (see Figure 1).



16

Figure 1.—Distribution of Country Standard Deviations in Mathematics, Grade 8,
31 Countries Meeting Sampling Requirements: 1995
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Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

Among these 31 countries, the country-level standard deviation of eighth-grade

mathematics performance was strongly predicted by country means: the higher the mean, the

larger the standard deviation (r=.71; see Figure 2).  (Note that Figure 2 has all of the countries in

our sample labeled other than Germany.  Germany was not included in the 31 countries meeting

all sampling requirements because it tested 7th and 8th grades even though students in those

grades were older than the TIMSS guidelines specified [Beaton, et al., 1996a, Appendix A].)

Seen this way, the standard deviation of mathematics performance in the U.S. (91) was about 9

percent higher than the value of 83.4 that would be predicted from the U.S. mean of 500, which
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was somewhat lower than the median of the country level means (522).  Numerous other

countries also had standard deviations that deviated comparably from those predicted by their

means.  For example, clustered tightly around the U.S. in Figure 2 are England and New

Zealand, and Germany would be as well if it were included in the Figure.

Figure 2. —Plot of Mathematics Standard Deviation by Mathematics Mean, Grade  8, 31
Countries Meeting Sampling Requirements: 1995

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)
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and Japan’s standard deviations (101 and 102, respectively ) are roughly 10% larger than that in

the U.S. (91), and Korea’s (109) is approximately 20% larger.  The standard deviations of

performance in Japan and Korea are roughly those predicted from their mean performance, while

Korea, like the U.S., shows modestly more variability than is predicted from its mean.  In our

sample of seven countries, the only one with an unusually small standard deviation of eighth

grade mathematics performance, either in absolute terms or relative to its mean, is France.

The TIMSS mathematics data also call into question the notion that the U.S. mean is

pulled downward by a distribution with an unusually long left-hand (low-scoring) tail.  None of

the distributions of eighth-grade mathematics performance in our seven countries shows

substantial skewness (Table 1).  The distribution in the U.S. shows slightly more positive

skewness than those in some other countries, indicating that the right-hand, or high-scoring, tail

of the distribution in the U.S. is slightly longer than the left-hand tail.  This can be illustrated

concretely by comparing the score differences between various percentiles.  In the U.S., the

distance from the median to the 75th percentile is 69 points, while the corresponding distance

between the median and the 25th percentile was a bit smaller, 59 points.  Similarly, the median is

farther from the 95th percentile than from the 5th.  In contrast, in Korea, the distance between the

median and the 75th percentile is similar to that between the median and the 25th percentile,

while the distance to the 5th percentile is larger than that to the 95th percentile.  Estimates of the

5th and 95th percentiles, however, should be interpreted with caution because of small counts.

Table 1. —Scale Points Between Percentiles, Grade 8 TIMSS Mathematics, Seven
Countries: 1995

Skewness

5th

Percentile
to Median

25th

Percentile
to Median (Median)

Median to
75th

Percentile

Median to
95th

Percentile
Australia .03 157 69 (529) 71 161
France .06 119 50 (534) 57 132
Germany .11 138 58 (506) 66 155
Hong Kong -.23 180 69 (595) 64 147
Japan -.08 173 72 (608) 68 163
Korea -.08 191 69 (609) 73 177
U.S. .23 138 59 (494) 69 159
SOURCES: Skewness coefficients calculated by RAND, using one-classroom-per-school subsamples in

U.S. and Australia.  Percentile differences calculated from Beaton, et al., 1996a, Appendix
Table E.1.
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Because of these differences in the shape of the performance distributions, the gap

between the United States and Korea and Japan is larger among high-achieving students than

among low-achieving students.  For example, Korean students at the 95th percentile (within

Korea) outscore U.S. students at the 95th percentile by 133 points, while Korean students at the

5th percentile outscore their U.S. counterparts by 62 points.  The differences at the 75th and 25th

percentiles are 119 and 105 points, respectively.2  This can be seen graphically in Figure 3,

which shows the distributions of eighth-grade mathematics performance in the U.S. and Korea.

The right-hand tails of the distributions in the two countries are nearly parallel.  The left-hand

side of the distribution is much shorter in the U.S., however, pulling the U.S. tail closer to the

Korean tail.3

                                                

2 The TIMSS reports use a different metric to compare achievement at different points on the distribution:
the percentage of students in each nation reaching “international marker levels:” the 50th, 75th, and 90th percentiles of
all students in the international sample (Beaton, et al., 1996a, Table 1.4; Beaton, et al., 1996b, Table 1.4).  That
metric, however, does not directly show differences in the distributions of achievement.  If countries differ only in
means and have otherwise identical and roughly normal distributions of scores, the low-scoring countries will look
progressively worse as the percentile used to define a marker is increased.  For example, a country with a below
average mean will be more severely underrepresented in the top decile than in the top quartile, simply because of the
mean difference.
3 Note that the shape of the distributions depend on the mix of items included in the assessment.  For
example, it is possible that including a larger number of easy items in the assessment would have stretched the left-
hand tails of these distributions.
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Figure 3. —Distributions of Mathematics Scores, Grade  8, Korea and U.S.: 1995
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SOURCE:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

In contrast, in eighth-grade science, the variability in the U.S. was large relative to that in

other countries.  The total range of standard deviations across the 31 countries was slightly

smaller in science than in math, ranging from 72 to 111, but the middle half of the countries

spanned a wider range, from 81 to 98 points.  The median of the 31 countries was 90.  The U.S.

standard deviation of 106 was well above this international median and was close to the

maximum (Figure 4).  However, it is important to note that three of the 31 countries (England,

Australia, and Bulgaria) had standard deviations equal to or larger than that of the U.S., and four

others (Ireland, Austria, Scotland, and New Zealand) were also within 10 percent of the U.S.

That is, about one-fourth of the 30 other countries had standard deviations of science

performance within 10 percent that of the U.S.  Thus, the variability of performance in the U.S.,

while large, was not exceptional.
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Figure 4. —Distribution of Country Standard Deviations in Science, Grade 8,
31 Countries Meeting Sampling Requirements: 1995
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Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

The relationship between variability and mean performance was weaker in eighth-grade

science (r=.54; see Figure 5) than in eighth-grade mathematics.  The standard deviations in the

U.S., Germany, and Australia were substantially larger than predicted.  (Note that Germany is

excluded from Figure 5 as well as Figure 2 because it failed to meet TIMSS sampling

requirements.  Germany’s data point would be very near that of the U.S.: its mean was 3 points

lower than that of the U.S., and its standard deviation was 5 points smaller.)  The standard

deviation was again small in France—it was one of the smallest in eighth-grade science—and

was again smaller than predicted by its mean score.  In eighth-grade science, unlike mathematics,
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the standard deviations of performance in Japan, Hong Kong, and Korea were near the middle of

the distribution and were markedly smaller than that in the U.S.
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Figure 5. —Plot of Science Standard Deviation by Science Mean, Grade  8, 31 Countries
Meeting Sampling Requirements: 1995

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)
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(Figure 6), while the U.S. mean score was appreciably above average.  In this case, Japan, Hong

Kong, and especially Korea showed substantially smaller standard deviations than did the U.S.

In fourth-grade mathematics, Singapore had by far the largest standard deviation of these 17

countries (Figure 6), even though it had the smallest standard deviation of any of the highest-

scoring countries in grade 8 (Figure 2).

Figure 6. —Plot of Mathematics Standard Deviation by Mathematics Mean, Grade  4, 17
Countries Meeting Sampling Requirements: 1995

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)
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U.S., 95, was near the maximum (97).  However, as in the eighth-grade, this did not make the

U.S. exceptional; about one third of the 16 other countries had standard deviations within 10

percent of that of the U.S. (Figure 7).  In fourth-grade science, even more than in fourth-grade

mathematics, the standard deviations of performance were relatively small in Hong Kong, Japan,

and especially Korea.

Figure 7. —Plot of Science Standard Deviation by Science Mean, Grade  4,
17 Countries Meeting Sampling Requirements: 1995

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)
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SIMPLE DECOMPOSITION OF VARIANCE IN SEVEN COUNTRIES

To interpret differences in the variability of performance across countries requires an

understanding of the extent to which the variability is clustered, for example, within classrooms

or schools.  As noted earlier, the TIMSS sample makes it impossible to distinguish clustering

within schools from clustering within classrooms, and it permits decomposition of score variance

only in mathematics.  The decomposition of mathematics performance variance between

classrooms and students, however, is sufficient to reveal striking differences among the seven

countries in our sample.

In the United States, mean eighth grade mathematics scores show a wide dispersion

among classrooms (see Figure 8; note that the country label is above each distribution).

Classroom means vary roughly as much in Hong Kong, Germany, and Australia as in the U.S.

(In Hong Kong, however, the distribution is left-skewed, while it is right-skewed in the U.S.)

Japan is very different: classroom means are highly concentrated over a narrow range of scores.

Korea’s classroom means are nearly as concentrated as those in Japan.  The distribution in

France appears to fall midway between the concentration shown in Japan and the wide dispersion

evident in the U.S.
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Figure 8. —Distribution of Classroom Mean Scores, Grade 8 Mathematics: 1995
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SOURCE:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)
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Summary statistics for these distributions of school means show the differences among
them clearly.  The standard deviation of classroom means is largest in Hong Kong (69) and
Germany (62) (Table 2).  Australia and the U.S. have standard deviations of classroom means of
approximately 50.  In contrast, classrooms vary less in France (SD=42) and especially Korea
(SD=32) and Japan (SD=34).

Table 2.—Means and Standard Deviations of Classroom Means,
Grade 8 Mathematics (1 classroom per school, weighted): 1995

Country Mean SD
Australia 530 52
France 538 42
Germany 509 62
Hong Kong 588 69
Japan 605 34
Korea 607 36
U.S. 500 51

  Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

These differences among countries are clarified when the total variance in student scores

is decomposed into two parts, within-classroom and between-classroom (where the latter

includes both variance between schools and variance between classrooms within schools).  In the

U.S., Hong Kong, Germany, and Australia, a bit over half of the total variance in eighth-grade

mathematics scores lies within classrooms, so nearly half lies between classrooms (Table 3).  In

contrast, in Japan and Korea, over 90 percent of the variance lies within classrooms.  France is

intermediate, with about three-fourths of the total variance lying within classrooms.  Similarities

among some countries in this two-level decomposition of variance, however, might mask

important differences that would be come apparent if TIMSS made it possible to distinguish

between-school from between-classroom variance.
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Table 3: Percent of Variance Within and Between Classrooms,
Grade 8 Mathematics (1 classroom per school, weighted), 1995

Country Percent
Between

Percent Within

Australia 47 53
France 27 73
Germany 45 55
Hong Kong 46 54
Japan 8 92
Korea 6 94
U.S. 42 58

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA).

Schmidt, Wolfe, and Kifer (1993) partitioned the variance of eighth grade mathematics

scores in six countries using data from the Second International Mathematics Study, one of the

predecessors of TIMSS.  Three of the countries analyzed here – France, Japan, and the U.S. –

were analyzed by Schmidt, et al., as well.  Their results for France and Japan were very similar to

those obtained here; they found 79 and 91 percent of the variance within classrooms,

respectively.  Their results for the U.S. were less similar.  They found only 46 percent of the

score variance within classrooms, compared to the 58 percent found here.  Schmidt, Wolfe, and

Kifer’s found striking differences among countries in the partitioning of aggregate variance.  In

France, for example, they found that two-thirds of the aggregate variance lay between schools,

while in the U.S., only 9 percent of the aggregate variance lay between schools (with the

remainder lying between classrooms within schools).  The one-classroom-per-school design in

most countries precludes similar analysis with TIMSS data.

The seven countries in our sample differ strikingly in terms of the heterogeneity of

student performance within the typical classroom, with the U.S. showing relatively little

variability within classrooms.  The heterogeneity of performance within classrooms depends on

both the total variance of performance in each nation and the breakdown of this variance into

within- and between-classroom components, as shown in Table 3.  As noted earlier, Japan and

Korea have slightly larger national standard deviations than the U.S. in eighth grade

mathematics.  Because those Japan and Korea also have a much larger share of their total

variance lying within classrooms than does the U.S., the typical within-classroom standard

deviation in mathematics is considerably larger in Japan (96) and Korea (102) than in the U.S.
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(74).  (See Table 4.)  The average classrooms are slightly less heterogeneous with respect to

achievement in Germany and France than in the U.S., while the average classroom in Australia is

slightly more heterogeneous.  (The greater percentage of variance within classrooms in France

compared to the U.S., Germany, and Australia shown in Table 3 is offset by the smaller total

national standard deviation in France.)

Table 4: Within-Classroom Standard Deviations:
Grade 8 Mathematics (1 classroom per school, weighted)

Country
Standard
Deviation

Australia 83
France 63
Germany 64
Hong Kong 73
Japan 96
Korea 102
U.S. 74

   Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA).

Less divergence among countries in the decomposition of variance appears in the fourth

grade.  In the U.S. and Hong Kong, roughly two-thirds of the total variance in mathematics lies

within classrooms; in Australia, 75 percent is within classrooms (Table 5).  Japan and Korea

again have roughly 90 percent within classrooms.  The higher percentage of variance within

classrooms in grade 4 compared to grade 8 in Australia, Hong-Kong, and the U.S. may reflect

less differentiation among classes on the basis of performance—i.e., less tracking.

Table 5: Percent of Variance Within and Between Classrooms,
Grade 4Mathematics (1 classroom per school, weighted)

Percent Between Percent Within
Australia 25 75
Hong Kong 33 68
Japan 5 95
Korea 12 88
U.S. 35 65

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA).
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MULTILEVEL MODELS OF PERFORMANCE VARIATION

Multi-level models were estimated for four countries: the U.S., France, Hong Kong, and

Korea.  The first part of this section describes the process by which decisions were made about

the pool of variables that would be considered in all four countries.  The second part describes

the type of multi-level models estimated.  Subsequent parts present bivariate statistics and multi-

level models for each of the four countries.  A final section compares the results from the four

countries.

Choosing Among Variables for Modeling Performance Variation

Our goal was to compare across countries the contribution of background factors to the

variability of performance, distinguishing between variability within and between classrooms.

Based on research in the U.S. about predictors of student performance, we chose to examine

parental education, other measures of family composition, socio-economic status, academic press

in the family and community, and a few measures of student attitudes.  We also examined the

effect of student age, which could predict performance in at least two ways.  Through

maturational effects, older students might be expected to perform better than others, particularly

in the younger grades.  On the other hand, to the extent that students who do poorly in school are

held back in grade, older students in a given grade might be expected to perform more poorly

than others, particularly in the higher grades.  Variations in age at entry could also affect later

scores in several ways.  If the propensity to hold back students because of expected poor

performance or policies about age and entry differ markedly among countries, the relationships

between age and performance could vary substantially as a result.

We did not examine curricular variables.  As measured, these will not predict variation

within classrooms, and research in the U.S. has generally shown variations in schooling to be

less powerful predictors of performance than background factors.  However, curricular

differences may be important predictors of performance variation between classrooms within

schools (for example, when students are tracked by ability) and between schools (when schools

differ substantially in curriculum).  Moreover, important curricular variables are likely to be

correlated with background variables.  Ideally, this work and the extant studies of curricular

differences would be followed by more ambitious efforts to model the relationships of
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performance with background factors and schooling variables jointly.  However, even such

studies would be limited by the more comprehensive measurement of curriculum in TIMSS and

by probable differences among countries in the adequacy of measurement of each set of

variables.

Thus, the results we report here should not be interpreted as clear effects of background

variables.  Rather, they are likely joint effects of the measured background factors, educational

and other factors collinear with them, and other omitted variables correlated with the measured

variables.  This is one reason that we place relatively little emphasis on the details of the

parameter estimates obtained for specific variables.  It is likely that these would change if a more

comprehensive set of predictors were available, if predictors were measured with less error, or if

we selected differently from among the available measures.  There is accordingly a risk of

treating the specific parameter estimates as more meaningful than they really are.  The ability of

the models to predict variance within and between levels, however, should be less sensitive to

the specific choice of predictors, and we place more emphasis on those findings.

We carried out extensive exploratory data analysis to determine which of the relevant

variables we should include in our models.  We examined the distributions of responses across

categories of the survey variables, the relationships of the survey variables to each other, and the

total, within-classroom, and between-classroom associations between background factors and

scores.  In numerous cases, the results of these analyses required that we limit our formal

modeling.  A few key findings of this EDA are described here.

Press and Attitude Variables

Although TIMSS includes numerous attitude and press variables, we focused on a set of

15 Likert variables that ask students how strongly they disagree or agree with statements about

the importance the student’s mother, the student’s friends, and the student herself place on doing

well in mathematics, doing well in the language of the test, doing well in sports, being placed in

the high-achieving class, and having time to have fun.

EDA showed these press and attitude variables to be problematic in several respects.  In

some instances, responses showed little variation.  Some relationships with scores were not what

one would anticipate.  Some relationships that one would expect to be strong were weak or

inconsistent; some that one would expect to be weak were strong; and some were negative or
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curvilinear when one would expect them to be positive and monotonic.  In several instances, the

data showed suggestions of response bias.

For example, several problems can be seen in the responses of eighth-grade students to

the BSBMMIP2 variable, “My mother thinks it is important for me to do well in mathematics at

school” (Figure 9).  This and the other press variables discussed here have four response

categories: strongly disagree, disagree, agree, and strongly agree.  The analysis of this variable is

described in some detail here to illustrate the EDA approach taken.

Figure 9.  Mathematics Scores and Responses to BSBMMIP2 Press Variable, Grade 8
Mathematics: 1995

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)
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Because Figure 9 is an unusual graphic (called a trellis plot [MathSoft, 1998] or a

multiway dot plot [Cleveland, 1993]), we explain here how it should be read.  Each of the seven

panels arrayed across the figure represents one of the seven countries in our sample.  The

common vertical axis, labeled on the left as BIMATSCR, is the final TIMSS mathematics score.

The four categories of responses to the survey question are arrayed on the X-axis of each panel:

SD = strongly disagree, D = disagree, A = agree, and SA = strongly agree.  The vertical position

of each plotted circle indicates the mean score of the students in that country who gave that

particular response to the background question.  Finally, the radius of each circle is proportional

to the percent of students within each country who provided that particular response.  The range

of sizes is constrained to make the graphic intelligible, however, and in the case of variables with

extreme differences in cell counts, the relative sizes of the circles will understate the actual

differences in cell counts.  This happened with numerous of the TIMSS press and attitude

variables that had extremely small cell counts.  For example, there were instances in which the

ratio of the largest to the smallest count across the four response categories within a single

country was well over 100:1.

In all of the seven countries other than Germany, the relationship between scores and

responses to the “My mother thinks it is important for me to do well in mathematics at school”

variable was in the anticipated direction: the more strongly students agreed with this statement,

the higher their average scores.  In many instances, however, this relationship stemmed in large

measure from very small groups of students.  In the U.S., for example, 97 percent of all students

were in the “strongly agree” and “agree” categories.  (This is one of the instances in which the

graphic understates the severity of differences in cell counts.)  The mean mathematics scores of

these two groups that included almost all students differed by only 10 points.  The “disagree”

and “strongly disagree” categories had markedly different score means but contained only 2 and

1 percent of students, respectively.  Somewhat similar patterns appeared in most of the other

countries.  This pattern does not call the validity of the responses into doubt, but it does indicate

that the variable is likely to have relatively little utility in predicting scores.  A different measure

that more fully captured variation in mothers’ press for mathematics achievement would be more

useful.

Two other patterns in Figure 9 bear mention: the extremely strong positive relationship

between BSBMMIP2 and scores in Korea and the curvilinear relationship with scores in
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Germany.  Both of these patterns appeared repeatedly across the TIMSS press and attitude

variables.  Indeed, the unexpected response pattern in Germany was stronger than this in the case

of some other variables.  For example, one might expect BSBMSIP2, “I think it is important do

well in mathematics at school,” to show a particularly strong relationship with scores.  Yet if one

excludes the 3 percent of German students who strongly disagreed with that statement, the

relationship between that variable and mean scores in Germany was consistently if modestly

negative.  Korea poses the opposite problem: relationships with student performance were so

consistently and strongly positive that they raise concerns about the validity of responses.  The

very strong positive relationship appearing in Korea extended to BSBGSIP6 and BSBGMIP6, “I

think it is important be placed in the high achieving class” and “My mother thinks it is important

for me to be placed in the high achieving class,” even though eighth-grade classes are not tracked

by achievement in Korea (Hyung Im, 1998).  One can only speculate about the causes of these

patterns, but one obvious possibility is cross-national differences in response bias.4

The relationships between some other press variables and student performance varied

markedly, sometimes dramatically, among countries.  For example, the relationships between

achievement and both “I think it is important be placed in the high achieving class” and “My

mother thinks it is important for me to be placed in the high achieving class” are negative in

Germany; essentially zero in France and Japan; modestly positive in Australia, Hong Kong, and

the U.S., and very strongly positive in Korea.  These differences among countries could have

several causes.  There might be response biases, either consistent or item-specific, that vary

among countries.  Translation problems could engender misleading response patterns.  There

might be substantive reasons for these differences as well; for example, press variables might in

fact have stronger relationships with student performance in some countries than in others,

perhaps because of differences in the correlations between press variables and school

characteristics or between press variables and ethnicity.

The TIMSS press variables include some tha t one would expect to show weaker or even

negative relationships with scores.  One set, for example, asks students how strongly they agree

with the statements that mother, friends, and the student herself think it is important to have time

                                                
4 The positive relationships between mean scores and both BSBGSIP6 and BSBGMIP6 in Korea might also
stem from translation difficulties.  Despite the phrase “placed in” in the English version of the question, perhaps
students interpreted the question to be whether they consider it important for their class to achieve well.



36

to have fun.  One might expect strength of agreement with these statements to show negative

relationships with performance: students who think it particularly important to save time for fun

might be less willing to put long hours into study, for example.  Yet quite the reverse is true of

two of the three variables of this sort: two of the strongest positive predictors of mean scores

from this set of variables are the strength of agreement with the statements “I think it is

important to have time to have fun” (BSBGSIP4) and “My friends think it is important for me to

have time to have fun” (BSBGFIP4).  In the case of BSBGSIP4, for example, this relationship is

monotonic and strongly positive in every country but France.  Indeed, these are the only two

variables from this set of 15 press and attitude variables in which the strength of agreement is

positively and monotonically related to mean scores in all of our seven countries, even Germany.

Thus, EDA of this set of 15 variables reveals several potentially serious limitations.

Using the traditional standard of convergent/discriminant evidence—that is, evidence showing

whether the size and directions of correlations among the observed variables are consistent with

what one would expect in the light of the constructs they are supposed to measure—the set of 15

variables looks questionable.  Moreover, some of the country-specific patterns appear suspect as

well.

In response to these findings, we used only two of these 15 press variables in our models:

the strength with which the student agreed that the mother and the student herself consider it

important to do well in mathematics.  While the concentration of responses to these variables

weakens them, the pattern of responses to them is otherwise reasonable in most of our seven

countries, and their theoretical relationship with achievement is clear.  In final analyses, we

pooled these two variables for each subject, creating a single “press for mathematics variable”

variable from the students’ responses pertaining to themselves and to their mothers.  These

composites were the mean of the two variables for the subject when both were present and

whichever was present when one was missing.  The decision to pool these two variables, which

is consistent with the logic of Likert scales, was made because the two press variables taken

individually had only insubstantial relationships with scores, while the composite showed

stronger relationships with scores.  We did not extend our multi-level modeling to Germany,

where these variables showed the most questionable relationships with scores.
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Student and Family Background

Similar exploratory analyses were carried out for 10 of the student and family

background variables we considered: whether the student was born in the country of testing;

mother’s and father’s educational attainment; number of people in the home; whether the father,

mother, and any grandparents lived with the student; how many books were in the home; and

whether the home had a study desk and a computer.  These analyses were necessarily restricted

to six countries, as Japan did not collect data about these variables.

In general, fewer problems appeared with background variables than with press and

attitude variables.  Missing data and “I don’t know” responses, however, posed serious

difficulties, particularly in France.

The presence of the mother and father in the home was positively associated with scores

in every country, although more strongly in some countries than in others.  In most of our six

countries, however, there was only modest variation in this variable – that is, few students

reported that the father did not live at home.  For example, roughly 8 percent of respondents in

Hong Kong and 11 percent in Korea reported that they did not live with their fathers.  In contrast,

one-third of U.S. eighth-grade respondents reported that they did not live with their fathers.  By

way of contrast, the presence of the grandfather in the home showed variable relationships with

scores across the seven countries: negative in three and near zero in the other three.  It is possible

that across countries, the presence of grandparents shows different relationships with other

background variables that are more directly related to achievement.  We excluded this variable

from all models.

Mothers’ and fathers’ educational attainment—shown by numerous studies in the U.S. to

be a particularly powerful predictor of students’ educational performance—showed a clear,

positive relationship with TIMSS mathematics scores in all six countries, and it showed a

reasonable dispersion across the categories of the TIMSS variables in most instances.  There

were a few patterns in the data, however, that required consideration in estimating models.

Mother’s educational attainment (BSBGEDUM, Figure 10) shows the categories ordered as in

the TIMSS database and shows several instances in which mean scores are not monotonically

increasing.  Some of these instances, such as the “some university” and “finished university”

difference in Korea, may reflect nothing more than sampling error stemming from small cell
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counts.  (For example, only 23 Korean eighth-grade students reported that their mothers had

completed “some university.”)
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Figure 10. —Mathematics Scores and Responses to Question about Maternal Education,
Grade 8 Mathematics: 1995

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

The “some vocational” category, however, poses a more difficult problem.  The means of

the “some vocational” and the “finished secondary” categories are not always in the same order.

Therefore, we combined the “some vocational” and “finished secondary” categories in our

models.  With this change, the relationship between scores and parental educational attainment

was more often monotonic, and in several countries, it was close enough to linear to suggest

using the recoded attainment variables as single variables (as opposed to sets of dummy

variables) in models.  The data patterns in Hong Kong suggested a different approach in that

country for mothers’ education only, which was to collapse “some vocational” with “finished
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university.”  (These two categories contained a total of only 219 cases; “some university”

contained none.)

These generally consistent, positive bivariate relationships between parental education

and student achievement are important for interpreting the multivariate models reported below.

The multivariate models showed surprisingly weak effects of parental education.  In the U.S., we

explored these weak effects by carrying out similar analyses using the National Education

Longitudinal Study (NELS-88) base year data.  The NELS analyses showed stronger effects of

maternal education.  (The comparison of NELS to TIMSS is presented after the U.S. two-level

models.)  Unfortunately, we cannot determine the reasons for this discrepancy between TIMSS

and NELS.  However, we place more confidence in the decomposition of variance between

levels than in particular selections of variables or parameter estimates, and this discrepancy

should not greatly affect the decomposition of variance.

The three variables about possessions in the home (study desk, computer, and number of

books) all showed positive relationships with scores in all six countries, although in several

nations, the first two showed such limited variability that their utility in modeling was doubtful.

For example, only 4 percent of French eighth-grade students reported that they did not have a

study desk.  The number of books reported (BSBGBOOK) showed a positive relationship with

mean scores in every country, although the strength of the relationship varied considerably

across the six.  The dispersion of students across the TIMSS a priori categories was also

generally quite good in our six countries (Figure 11).  This relationship was also monotonic in all

instances other than one group in France.  In France, the top category (more than 200 books)

scored on average lower than the next category (101 to 200 books).  Therefore, we included the

number of books in our models, but in the case of France, we collapsed the top two categories

into one.
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Figure 11. —Mathematics Scores and Responses to Number of Books in Home, Grade 8
Mathematics: 1995

The final variable in this set asks the student whether she was born in the country in

which the test was administered.   On average, immigrant students scored lower than others in

the U.S. and Germany but about the same as others in Australia and higher than others in Hong

Kong.  The differences in this relationship across countries might reflect real differences in the

characteristics of immigration—e.g., differences in countries of origin and in the educational

level of immigrant families.  Thus we decided to explore the utility of this variable in formal

models, with the recognition that the implications of the variable could differ markedly across

the countries in our sample.

While response patterns for these variables generally seemed reasonable, missing data

and uninformative responses posed serious difficulties in several instances.  In some cases,

important variables were not collected at all.  Japan collected none of these background
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variables, and France omitted the variable asking students if they were born outside of the

country.  (France also did not administer questions about the father’s and mother’s country of

birth.)

In all of our countries, responses to the questions about parents’ educational attainment

were missing for substantial percentages of students.  This problem was greatest in France

(where 17 percent were missing for fathers and 16 percent for mothers) and Germany (13 and 12

percent, respectively).5  More important, of the students who responded to these question, many

answered “I don’t know.”  This problem was particularly severe in France, where 16 percent of

eighth-grade students did not respond to the question about their mothers’ educational

attainment, and an additional 34 percent responded “I don’t know,” so that a total of 50 percent

of respondents provided no informative answer (Table 6).  Thirty percent of students in Germany

and 18 percent in Australia failed to provide an informative response.

Table 6. —Percent of Students with No Response or Response of “I Don’t Know”
               to Question About Mother’s Educational Attainment: 1995

Missing I don't know Total
Australia 4 15 18
France 13 34 47
Germany 9 21 30
Hong Kong 5 9 14
Korea 0 9 9
U.S.A 3 7 11
Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

The frequency of missing data and “I don’t know” responses required that we choose

among three approaches: (1) omit parental educational attainment from models in France in

order to use most of the full sample; (2) include one or more parental education variables without

imputation and use a substantially reduced sample; or (3) impute parental educational attainment

for half the sample so that we could use the full sample while including one or both parental

education variables in the models.  Efforts to impute missing parental education data proved

                                                
5 These percentages, which match those in the TIMSS publications, combine cases of student non-response
with cases in which the question was not administered.  Except in Japan, where these questions were not
administered to any students, non-response was more common than instances in which questions were not
administered.  In Population 2 in France, for example, the question about mother’s attainment was not administered
to 3.4 percent of students, while 12.7 percent failed to answer the question.
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unsatisfactory for several reasons, including the sheer magnitude of the missing data problem,

weak prediction of the absence of informative responses, and evidence that imputation biased the

results of the model.  Comparisons of preliminary models unfortunately showed that the choice

between the two options that did not involve imputation affected the results appreciably,

although it appeared not to have a major on the overall prediction of score variance.  Thus, any

choice results in findings for France that have to be interpreted with caution.  Analyses of the

impact of this choice can be found in Appendix C.

The final selection of variables used in the analysis and their sources are listed in

Appendix A.

Specifying Multilevel Models

The multilevel models reported here are simple “fixed coefficients” models (Kreft and

DeLeeuw, 1998).  That is, the coefficients estimating the level-one relationships between

background factors and achievement (student-level relationships within classrooms) are held

constant across classrooms within countries.  Between-classroom effects were thus limited to

differences in intercepts.  In general form, this model is:

ijjjijij xxxy εγβα ++−+= )(

where the subscript i indicates individuals, j indicates classrooms, an underscore indicates a

vector, and a bar over a variable indicates a mean.  In other words, a student’s score reflects a

vector of background variables weighted by a vector of regression coefficients, a vector of

classroom means of those same background characteristics weighted by a second vector of

coefficients, and random error.  The coefficients estimated for individual characteristics are held

constant across classrooms.  (That is, there are no cross-level interactions between individual and

classroom characteristics.)  Equivalently, this can be expressed in terms of two levels as follows:

*)( ijjijjij xxy εβα +−+=

jjj x ηγαα ++=

*
ijjij εηε +=

In other words, the intercept in each classroom is the sum of the overall intercept and the sums of

the classroom aggregate variables weighted by the classroom-level regression coefficients, plus

error.  The score of each individual student is then the sum of that student’s classroom intercept
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and the sum of the student-level background variables weighted by the student-level regression

coefficients, plus error.

These models center observations around classroom means—that is, each student’s value

on each predictor x is expressed as a deviation from the mean of that variable in that classroom.

Without group-mean centering, the predictor variance within and between classrooms would be

confounded.  For example, if one added to a classroom a student whose value on a given

predictor was very low, that addition would contribute to within-classroom variance in the

predictor (the student would be low relative to the classroom mean) and between-classroom

variance (the student would pull down the mean of the classroom).  Centering eliminates

confounding of the predictor variance between and within classrooms.  Centering also frees us

from the assumption that the effects of variations in classroom means equals the effects of

deviations within classrooms and makes the model’s coefficients straightforward estimates of the

within-classroom and between-classroom effects (e.g., Bryk and Raudenbush, 1992).  With

group-means centering, the classroom-level coefficients c are not estimates of context effects,

that is, the effect of aggregate variables above and beyond the impact of individual-level

variables.  When slopes are fixed, as in our models, subtraction of a within-classroom coefficient

(b) from the corresponding classroom-level coefficient (c) provides an estimate of the context

effect.6

One could also specify more complex models; for example, one could allow the student-

level regression coefficients to vary across classrooms.  Preliminary analysis, however,

suggested that little would be gained by making the models more complex, either by allowing the

slopes to vary randomly or by modeling their variation.

We began with the assumption that the full range of background variables that survived

EDA screening would be included in the models.  Including some that survived the EDA,

however, resulted in numerous small and statistically non-significant parameter estimates.  We

therefore selected models based on what could be called a ‘judgmental stepwise’ procedure, in

which we began with a null model (i.e., a model including nothing but an intercept), built up to a

more complex model, and then pared back to a more parsimonious model based on the size and

                                                
6 Alternatively, an uncentered model would provide direct estimates of context effects, and the between-

classroom effects could then be estimated by adding each c to the respective b .  For our purposes, however, it is
more straightforward to estimate the within- and between-classroom effects directly.
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significance of coefficients.7  In general, we opted to include variables that were only marginally

significant or that failed to reach significance by a modest amount, leaving it to the reader to

discount them, provided that their inclusion did not markedly change the coefficients of other

variables.  In addition, because our classroom-level variables are aggregates of micro-level

variables, we included at both levels any variable that was significant at either level.  This

process is illustrated by Appendix B, which presents all of the models used to select the final

U.S. model.

The statistics normally reported from hierarchical models—intercepts and regression

coefficients at each level of aggregation—are sufficient for predicting means but not for

comparing variation in performance across countries.  For example, at the classroom level, the

estimated effect of the proportion of students living with their fathers indicates how much, on

average, the classroom mean score would increase if the proportion increased from 0 to 1, but it

does not indicate how much of the variability among classroom mean scores is attributable to

this factor.  The percentage of variance attributable to a given predictor is simply the change in

R2, and we calculated for each factor in our models and at both levels of aggregation the

increments in R2 that would have obtain if that variable had been entered first and last.  In

analyzing a single sample, that would be sufficient for many purposes, but for comparing across

nations, it is not.  Countries may differ not only in terms of the impact of a given predictor on

performance, but also in terms of the variation (and the clustering of variation) shown by the

predictor.  Comparisons of R2 would be affected by both of these considerations.  Therefore, we

present for each model a summary of the variance accounted for by the predictors at each level,

expressed as the absolute value of the predicted variance, the percentage of variance predicted

within level, and the percentage of total variance predicted.

                                                
7 This is in contrast to traditional stepwise or other empirical subsets procedures, in which criteria specified a
priori, such as F-for-inclusion, are applied algorithmically.
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Decomposing Performance Variation in the U.S.

We began within-country analysis in the U.S. for two reasons.  The EDA showed

relatively few problems in the U.S. background data—for example, the U.S. did not show the

peculiar associations with scores found in Germany and had much less severe missing data about

parental education than did France.  Moreover, our familiarity with research on the predictors of

achievement in the U.S. gave us more of a basis for formulating and testing models in the U.S.

than elsewhere.

Bivariate Relationships

The simple correlations between background variables and scores—pooling students

without regard to classrooms—were typically small (Table 7).8   The largest correlation of any

background variable with mathematics scores was .34, the correlation between scores and the

number of books in the home.  The presence of a computer in the home, father’s education, and

mother’s education all showed roughly the same correlation with math scores, from .24 to .28.9

A few of the correlations between background variables were larger.  The correlation

between mother’s and father’s education was moderate, .55.  The largest of the other correlations

among the background variables was .33, and most were smaller or trivial.  These modest

correlations are not a result of nonlinearities; the only substantial nonlinearities involved cells

that included very few cases.  This pattern of modest intercorrelation is important for

interpretation of the models presented below, because it rules out high collinearity at the student

level as an explanation for the modest impact of many variables in the models.

                                                
8 The press variables have been recoded so that “strongly disagree” has a value of 1 and “strongly agree” has
a value of 4.  The TIMSS data have the press variables coded in the opposite direction, which causes substantively
positive relationships to appear as negative correlations.
9 Note, however, that these are different correlations and are not entirely comparable.  The correlations with
number of books, mother’s education, and father’s education are point-polyserials, while the correlation with
computer present is a point-biserial.
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Table 7.—Student-level correlations between background variables and scores, USA, uncentered: 1995

Father
present

Number
of books

Computer
present

Press Born in
country

Mother’s
education

Father’s
education

Age Math
score

Father present 1
Number of books 0.16 1
Computer present 0.18 0.33 1
Press 0.01 0.12 0.06 1
Born in country -0.02 0.12 0.06 0.10 1
Mother’s education 0.06 0.31 0.28 0.04 0.01 1
Father’s education 0.12 0.32 0.32 0.06 0.00 0.55 1
Age -0.06 -0.11 -0.07 -0.10 -0.04 -0.08 -0.10 1
Math score 0.14 0.34 0.24 0.12 0.07 0.22 0.28 -0.16 1
Source:  Third International Mathematics and Science Study, Population 2 data set, International Association for the Evaluation of Educational
Achievement (IEA)
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These already modest student-level correlations dropped sharply when the between-class

variance was removed by centering all observations around their classroom means (Table 8).  In

this case, classroom means were pulled out, and correlations reflect only students’ deviations

from classroom means.  (In effect, these are within-classroom correlations, pooled across

classrooms.)  The strongest centered correlation between any of the background correlations and

mathematics scores was the correlation of .14 between scores and the number of books in the

household.

Note that within classrooms, the correlations between scores and mother’s and fathers’

education were trivial.  The relationship between parental education and scores lies almost

entirely between classrooms.

The relationships between background variables and scores were generally much stronger

at the classroom level—that is, when classroom means were correlated (Table 9).  Four of the

background variables showed correlations above .60 with mean mathematics scores: mean

number of books (.78), percent with computers in the home (.70), mean mother’s education (.64),

and mean father’s education (.66).  At the classroom level, mean mother’s and father’s education

were quite collinear with some other background variables, showing correlations of about .75

with mean number of books and .78 with percent with computers.  These strong relationships are

echoed in the strong classroom-level coefficients in the multilevel models, and the collinearity of

these variables at the classroom level is important in interpreting those models.  Note that the

relatively large classroom-level correlations reflect strong covariance and substantial variations

in classroom means, not merely reduced sampling error in means compared to student scores.
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Table 8.—Student-level correlations between background variables and scores, USA, centered: 1995

Father
present

Number
of books

Computer
present Press

Born in
country

Mother’s
education

Father’s
education

Age Math
score

Father present 1
Number of books 0.11 1
Computer present 0.15 0.22 1
Press 0.01 0.11 0.04 1
Born in country -0.03 0.09 0.05 0.08 1
Mother’s education 0.02 0.19 0.17 0.01 -0.01 1
Father’s education 0.09 0.19 0.19 0.03 -0.01 0.46 1
Age -0.04 -0.06 -0.03 -0.07 -0.04 -0.05 -0.05 1
Math score 0.04 0.15 0.07 0.09 0.04 0.06 0.10 -0.13 1

Source:  Third International Mathematics and Science Study, Population 2 data set, International Association for the Evaluation of Educational
Achievement (IEA)

Table 9.—Classroom-level correlations between background variables and scores, USA: 1995

Father
present

Number
of books

Computer
present Press

Born in
country

Mother’s
education

Father’s
education

Age Math
score

Father present 1
Number of books 0.42 1
Computer present 0.37 0.78 1
Press -0.05 0.25 0.23 1
Born in country -0.01 0.32 0.16 0.23 1
Mother’s education 0.23 0.77 0.79 0.28 0.20 1
Father’s education 0.29 0.74 0.80 0.27 0.13 0.85 1
Age -0.22 -0.33 -0.26 -0.26 0.02 -0.28 -0.31 1
Math score 0.55 0.78 0.70 0.30 0.26 0.64 0.66 -0.28 1
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Multilevel Model

The final two-level model of mathematics scores in the 1 CPS sample contained only five

variables at each level: the number of books in the home, the presence of a computer in the

home, the presence of the father in the home, an academic press variable, and student age (with a

quadratic term).  The press variable was the mean of two variables: the extent to which students

agreed with the statements that they and their mothers thought it important to do well in

school.10  The square of age was included because of nonlinearities in the relationships between

age and scores that became apparent in the exploratory data analysis.  Each of these variables

was at least marginally significant at one of the two levels.  As noted, the classroom-level effects

were limited to varying intercepts; the within-classroom slopes were held constant across

classrooms.  All within-classroom variables were centered about the classroom means, in order

to eliminate confounding between within- and between-classroom effects.

The importance of these predictors can be evaluated several ways.  One can look at the

significance and impact of the individual coefficients within each level, the relative significance

or impact of the coefficients across levels, and the total predictive power of the coefficients at

each level.   These three approaches are each described in turn.

Within classrooms, the strongest effects were those of the number of books, the academic

press variable, and students’ age (Table 10).  The effects of having a computer and the father

living at home were both smaller and non-significant.  It is important to note, however, that most

of these estimates are imprecise.  The right-most two columns of Table 10 show the upper and

lower bounds of a 95% confidence interval around each estimated effect.  Most of these bands

are wide, as one would expect from the modest t values.

                                                
10 As noted earlier, when one of these variables was missing, the second was used alone in lieu of the mean.
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Table 10:.—Two-Level Model of Mathematics Scores, USA, Grade 8: 1995

Variable Effect SE t p CILBa CIUBb

Intercept -351.7 265.9 -1.3 0.19 -884.9 181.5
Within class (b)
Number books 7.9 1.2 6.7 0.00 5.6 10.3
Computer present 4.4 3.5 1.2 0.22      -2.7 11.4
Father present 1.7 3.3 0.5 0.60      -4.9   8.3
Press 9.6 2.6 3.7 0.00 4.4 14.7
Age    -14.4 3.3      -4.3 0.00    -21.1  -7.7
Age2      -6.9 3.7      -1.9 0.07    -14.2   0.5
Between-class (c)
M Books 45.5   7.4 6.2 0.00     30.7 60.2
M Computer 37.2 16.8 2.2 0.03       3.6 70.9
M Father present 90.3 21.4 4.2 0.00     47.4    133.2
M Press 43.2 17.1 2.5 0.01       9.0 77.4
M Age 33.9 15.3 2.2 0.03       3.2 64.6
M Age2   -149.4 37.1      -4.0 0.00  -223.8     -75.0
Residual variances
r2 (within) 4570.4

t (between)   766.2
a Lower bound of 95% confidence interval around parameter estimate
b Upper bound of 95% confidence interval around parameter estimate
NOTE: All estimates of error and significance reflect jackknifed estimates.

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

Most of the estimated within-classroom effects were small to moderate.  For example, the

estimated effect of the number of books was 7.9.  This variable had five categories.  (We entered

this as a single variable for simplicity because the bivariate plot of scores versus number of

books was essentially linear.)  The model predicts that holding constant the other variables, the

mean difference between students in the lowest and highest categories would be 32 points.  The

standard deviation of mathematics scores in this subsample was 89.4 points.  Thus, the predicted

difference in mathematics scores between students in the two most extreme categories of number

of books is roughly one-third of a standard deviation.  The press coefficient was larger, but since

most students are concentrated within two categories of either of the press variables, and the

effect of being in the higher of these two categories, relative to the lower of them, was only about

one-tenth of a standard deviation.  The age coefficient was significant and negative, suggesting
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that either retention or late entry of slower learners have a larger impact than maturational

effects.

At first glance, the estimated effects at the between-classroom level (preceded by an “M”

for “mean” in Table 10 and all similar tables following) appear much larger than the coefficients

at the within-classroom level.  However, the standard errors of the estimated between-class

coefficients are generally large, and the t statistics of most of the between-class coefficients are

only modestly larger than those of the corresponding within-class estimates.

Nonetheless, there are some striking differences between the within- and between-

classroom estimates.  The presence of the father in the home had a non-significant and near-zero

relationship to scores within classrooms but a substantial relationship between classrooms.  The

model estimates that on average, the within-classroom effect of having the father present was

less than 2 points, roughly 2 percent of a standard deviation.  The mean of the father-present

variable is the proportion of students with father present, which could in theory vary from 0 to 1.

The model predicts that holding other variables constant, an increase from 0 to 1 would be

accompanied by an increase of 90 points on the mathematics scale.  Classrooms in our grade 8

mathematics model sample ranged from 15 to 100 percent of fathers present, with a mean of 66

and a standard deviation of 16.  Thus, the model estimates that holding other variables constant,

going from the minimum to the maximum values we observed for the percent of fathers present

would be associated with a gain of 77 points, or almost .9 standard deviation.  Going from one

standard deviation below the mean to one standard deviation above on the scale of proportion of

fathers present (from .50 to .82) would predict an increase in mean scores of about one-third of a

standard deviation.

The difference in predictive power at the within- and between-classroom levels becomes

clearer if one compares the variance accounted for by variables at each level.  In this model, 59

percent of the total variance in scores was within classrooms, while the remaining 41 percent was

between classrooms (Table 11).  The five variables in the model predicted about 77 percent of

the between-classroom variance but only 4 percent of the within-classroom variance.  The

predicted between-classroom variance was 2,532, while the predicted within-classroom variance

was only 198.  Thus, the five between-classroom variables accounted for 31 percent of the total

variance of mathematics scores [2532/(3299+4769)], while the five within-classroom variables

accounted for only 2 percent of the total variance.
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Table 11. —Total and Predicted Variance in Mathematics Scores at Each Level,
USA, Grade 8: 1995

Between
classroom

Within
classroom

Total variance at level 3299 4769
Percent of variance at level     41    59
Variance predicted by variables at level          2532   198
Percent of variance at level predicted

by variables at level    77      4
Percent of total variance predicted by

variables at  level    31      2

Comparing TIMSS to NELS

The lack of a substantial relationship between scores and parental education and students

scores in the U.S. multilevel models was surprising.  Parental educational attainment—in

particular, the educational attainment of the mother—is generally considered one of the most

powerful predictors of student performance.

The lack of importance of parental education in our models could stem from the

particular models we used.  Many of the studies that show parental education to be important

predictors employed single-level models.  Moreover, multilevel models are often very sensitive

to the particular specifications employed (Kreft and DeLeeuw, 1998).  On the other hand, these

results could also stem from idiosyncratic characteristics of the TIMSS database, such as

characteristics of the samples or the assessments.

In order to explore these unexpected findings, we carried out parallel analyses of

mathematics in TIMSS and the eighth-grade (base year) sample of the National Education

Longitudinal Study (NELS-88).  Several simplifications were needed to make the models

comparable in the two databases, and even with these simplifications, one difference remained

between the two.  First, the “number of books in the home” variable in TIMSS had five

categories: 0-10, 11-25, 26-100, 100-199, and 200+.  NELS, however, employed a "50 or more

books" dummy variable, so there was no way to collapse the TIMSS variable to be exactly

comparable.  Based on the frequencies of the responses, we dichotomized the TIMSS variable at

26 books to be most comparable to NELS, even though a variable split at 101 books would likely
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have been a more powerful predictor.11  Second, we collapsed the mother’s education variable

into four categories: 1=did not finish high school; 2=graduated high school; 3=less than four

years of college; and 4=graduated college.  This was entered as a single variable.  Third, NELS

does not have the same press variables as TIMSS, so we deleted that variable from our models.

Finally, mathematics scores were standardized to a distribution with mean 0 and variance 1 to

allow comparison of parameter estimates across the two databases.  This makes parameter

estimates from these models different in scale from those in the TIMSS models presented above

but would not affect their significance or relative size.

These changes affected the results of the 1 CPS TIMSS model, making mother’s

education a (barely) significant predictor of mathematics scores at the classroom level, but not at

the within-classroom level (Table 12).  We can speculate that the stronger partial relationship

between scores and mother’s education in this model, relative to our final TIMSS model,

stemmed from the deletion of the press variable and the dichotomization of the number-of-books

variable.  Within classrooms, the only significant predictors were age and number of books

present.  In the TIMSS model reported above, both of these variables and the combined press

variable had significant effects within classrooms.  At the between-classroom level, the mean of

mother’s educational attainment had a significant effect, t = 2.2.  At that level, all of the other

variables except for the proportion of students with computers in the home were statistically

significant.  In the final TIMSS model above, all of these variables, including the proportion with

computers, were significant, and most of the t values were similar in the two models.

                                                

11 When weighted, 89 percent of the NELS sample responded that they have 50 or more books at home.  In
the TIMSS grade 8 sample, 79 percent responded that they had 26 or more books at home, and 51 percent responded
that they had 101 or more.  The TIMSS and NELS responses to these variables are quite different.  The TIMSS
results indicate that somewhere between 21 and 49 percent of students have fewer than 50 books at home, compared
to the 11 percent who gave that response in NELS.  This could reflect the effects of random sampling error,
systematic differences between the samples, or cohort changes.
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Table 12.—Two-Level Model of Math, TIMSS Grade 8, 1 CPS, Modified for Comparison
to NELS: 1995

Variable Effect SE t p CILBa CIUBb

Intercept -7.02 2.20 -3.19 0.00 -11.44 -2.60
Within class (b)
Father present 0.04 0.04 1.10 0.28 -0.04 0.13
Number of books 0.26 0.04 5.84 0.00 0.17 0.34
Computer present 0.07 0.04 1.55 0.13 -0.02 0.16
Mother’s education 0.02 0.02 0.96 0.34 -0.02 0.06
Age -0.18 0.04 -4.71 0.00 -0.25 -0.10
Age2 -0.06 0.04 -1.28 0.21 -0.15 0.03
Between class (c)
M Father present 1.10 0.23 4.74 0.00 0.63 1.57
M Number of books 1.49 0.31 4.88 0.00 0.88 2.10
M Computer present 0.38 0.25 1.48 0.15 -0.13 0.89
M Mother’s education 0.24 0.11 2.19 0.03 0.02 0.47
M Age 0.32 0.15 2.10 0.04 0.02 0.63
M Age2 -1.63 0.37 -4.44 0.00 -2.36 -0.89
Residual variances
r2 (within) 0.58

t (between) 0.10
a Lower bound of 95% confidence interval around parameter estimate
b Upper bound of 95% confidence interval around parameter estimate
NOTE: All estimates of error and significance reflect jackknifed estimates.

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

The second step in comparing TIMSS to NELS was to rerun the analysis using schools

rather than classrooms as the level-2 unit.  NELS, unlike TIMSS, sampled students randomly

within schools, rather than sampling intact classrooms.  Therefore, to make the TIMSS findings

reported in this section more comparable to NELS, the model was re-run with the full Grade 8

TIMSS sample, which comprised 2 classrooms in most schools but a single class in some and

more than two in a few.12 This full TIMSS sample is not entirely comparable to the NELS

sample – in schools in which there are more classrooms than were sampled, students in the

TIMSS sample will be more clustered than those in NELS – but it is more comparable to NELS

                                                
12 This model used the regular TIMSS sample weights, while the analyses of the 1 CPS sample used our
modified weights.
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than our standard, one-class-per-school sample.  In this full TIMSS sample, as in NELS, the

level-1 or within-unit portion of the model is within schools, rather than within classrooms, and

the level-2 portion is between schools rather than between classrooms.

Including the full TIMSS sample of classrooms and using schools as the level-2 unit

substantially increased the statistical significance of several within-unit effects (Table 13).  Most

important for present purposes, the estimated effect of each increase of one level in mother’s

education (on our four-point scale) changed from .02 SD to .07 SD from the 1-CPS to the full-

sample model, and the latter estimate was clearly significant.  Similarly, in the 1 CPS analysis

(Table 12), the estimated within-class effect of having a computer was .07 SD and was

nonsignificant.  In the full sample (Table 13), the estimated within-school effect was .12 SD and

was highly significant (t = 4.4).

It is not surprising that some of the within-unit effects were larger when the full TIMSS

sample was used.  In the full sample, the within-unit variance includes the variance between

classrooms within schools, which is part of the between-unit variance in the 1 CPS models.  If

there is any differentiation among classes within schools in terms of performance – whether by

explicit tracking or by more informal mechanisms – this variance is included in the between-unit

level in the 1 CPS analysis but in the within-unit level when the full TIMSS sample is used.
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Table 13.—Two-Level Model of Math, TIMSS Grade 8, All Classrooms, Modified for
Comparison to NELS: 1995

Variable Effect SE t p CILBa CIUBb

Intercept -7.81 3.16 -2.47 0.02 -14.15 -1.46
Within school  (b)
Father present  0.09 0.02  3.50 0.00  0.04  0.13
Number of books  0.29 0.04  8.02 0.00  0.21  0.36
Computer present  0.12 0.03  4.43 0.00  0.07  0.18
Mother’s education  0.07 0.02  3.95 0.00  0.03  0.10
Age -0.24 0.02 -11.27 0.00 -0.28 -0.20
Age2 -0.08 0.03 -2.57 0.01 -0.15 -0.02
Between school (c)
M Father present  1.27 0.28 4.55 0.00  0.71  1.83
M Number of books  1.42 0.46 3.08 0.00  0.49  2.35
M Computer present  0.46 0.35 1.32 0.19 -0.24  1.16
M Mother’s education  0.16 0.15 1.09 0.28 -0.14  0.46
M Age  0.37 0.22 1.68 0.10 -0.07  0.82
M Age2 -0.94 0.29 -3.21 0.00 -1.53 -0.35
Residual variances
r2 (within) 0.67

t (between) 0.08
a Lower bound of 95% confidence interval around parameter estimate
b Upper bound of 95% confidence interval around parameter estimate
NOTE: All estimates of error and significance reflect jackknifed estimates.

Source:  Third International Mathematics and Science Study, Population 2 data set, International

Association for the Evaluation of Educational Achievement (IEA)
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The estimated between-unit effects changed less when the full TIMSS sample was used

instead of the 1 CPS sample.  The between-unit effects of mean mother’s education dropped and

became nonsignificant, however, when all classrooms were included.  In the 1-CPS analysis, a

one-unit change in mean mother’s education predicted an increase of .24 SD in scores (Table

12), while in the full TIMSS sample, a one-unit change in mean mother’s education predicted a

nonsignificant increase of .16 SD (Table 13).

A comparable model of the NELS data produced within-school results that were quite

similar to those of the school-level full-sample TIMSS model except for mother’s education and

age.  The estimated within-school effect of a one-step increase in mother’s education was more

than twice as large in NELS (Table 14) as in the full TIMSS sample (Table 13).  The estimate of

the impact of mother’s education also had a smaller standard error in NELS than in TIMSS.  The

result of the larger parameter estimate and smaller standard error was a much larger t statistic in

NELS than in TIMSS (13 in NELS, vs. 4 in TIMSS), indicating that we can have much more

confidence that the parameter in NELS is non-zero.  The within-school effect of age was also

much larger in NELS.
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Table 14.—Two-Level Model of Mathematics, NELS Grade 8: 1988

Variable Effect SE t p CILBa CIUBb

Intercept -0.33 1.02 -0.33 0.75 -2.42  1.75
Within school (b)
Father present  0.09 0.01  6.65 0.00  0.06  0.11
Number of books  0.22 0.03  8.09 0.00  0.17  0.28
Computer present  0.15 0.02  8.53 0.00  0.12  0.19
Mother’s education  0.16 0.01 12.67 0.00  0.13  0.18
Age -0.34 0.02 -20.49 0.00 -0.37 -0.30
Age2 -0.06 0.01 -7.01 0.00 -0.08 -0.04
Between school (c)
M Father present  0.69 0.08  9.00 0.00  0.53  0.85
M Number of books  0.56 0.12  4.72 0.00  0.32  0.81
M Computer present  0.33 0.08  4.16 0.00  0.17  0.49
M Mother’s education  0.43 0.03 16.41 0.00  0.38  0.49
M Age -0.13 0.07 -1.73 0.09 -0.28  0.02
M Age2 -0.31 0.08 -3.96 0.00 -0.47 -0.15
Residual variances
r2 (within) 0.70

t (between) 0.07
a Lower bound of 95% confidence interval around parameter estimate
b Upper bound of 95% confidence interval around parameter estimate
NOTE: All estimates of error and significance reflect jackknifed estimates.

Source:  National Education Longitudinal Study (NELS-88), 1988, National Center for Education
Statistics, U.S. Department of Education.

The difference between NELS and TIMSS in the estimated between-school effect of

mother’s education was even greater.  Recall that in the TIMSS full sample, a one-unit increase

in mean mother’s education had a nonsignificant effect of .16 SD on scores.  In NELS, the

estimated effect of a one-unit increase in mean mother’s education was nearly three times as

large: .43 SD (t = 16).  Conversely, the estimated between-school effects of mean age, percent

father present, and mean number of books were all markedly smaller in NELS.

These differences between NELS and TIMSS are large enough to be important for some

uses and interpretations of the data.  They could stem from any number of factors.  The TIMSS

and NELS performance measures are quite different.  They do not have identical content, and the

TIMSS measures, unlike the NELS measures, are constructed using an adaptation of the

plausible values methodology used in NAEP.  Differences in the reliability of the outcome

measures would affect the parameter estimates for background factors, but one would expect
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these effects would be in the same direction for all background factors, and they were not in this

case.  Differences in content, however, could conceivably have different effects on different

parameter estimates.  The differences shown here could also stem from differences in sampling,

period effects (the TIMSS Population 2 data were collected roughly seven years later than the

NELS baseline data), or response biases (stemming from differences in context or in the

operationalization of the background variables).

Decomposing Performance Variation in France

We followed the same procedures in analyzing data from France, but the extent of

missing data about parental education complicated both analysis and interpretation.  We were

forced to chose between a more inclusive model (including parental education) in a reduced

sample or a reduced model in a more inclusive sample.  We opted for the more inclusive model

in the reduced sample that includes only students who provided informative answers to the

questions about parental education.

Although the data do not entirely clarify the effects of this choice, analysis of the two

samples suggest that our basic findings about the prediction of score variance at each level would

not have been fundamentally changed by analyzing a reduced model in the more inclusive

sample.  Some specific parameter estimates might have been affected, however, but we place

less emphasis on specific parameter estimates in our interpretation.  The effects of the sample

and model differences are discussed in Appendix C.

Bivariate Relationships

As in the U.S., we compared three sets of correlations between scores and background

variables: simple student-level correlations, student-level correlations centered on classroom

means, and classroom-level correlations.

The uncentered student-level correlations were generally very small (Table 15), and most

were smaller than the corresponding correlations in the U.S. (Table 7).  Mathematics scores

showed weaker correlations in France than in the U.S. with all background variables other than

age, and the correlations with both the number of books (r=.14) and computer in the home

(r=.10) were much weaker.  Correlations between scores and mother’s and father’s education

were somewhat smaller than those in the U.S.  Correlations among the background variables

themselves were also generally smaller in France than in the U.S.  In France as in the U.S.,
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centering students’ scores around their classroom means reduced most of these already small

correlations appreciably (Table 16).

Table 15.—Student-level correlations between background variables and scores, France,
uncentered: 1995

Father
present

Number
of books

Computer
present Press

Mother’s
education

Father’s
education

Age Math
score

Father present  1
Number of books  0.04  1
Computer present -0.01  0.24  1
Press -0.01  0.03  0.07  1
Mother’s education  0.00  0.38  0.24  0.09  1
Father’s education -0.04  0.36  0.26  0.09  0.70  1
Age -0.07 -0.19 -0.08 -0.11 -0.24 -0.23  1
Math score  0.09  0.14  0.10  0.12  0.22  0.18 -0.31 1

Source:  Third International Mathematics and Science Study, Population 2 data set, International Association for
the Evaluation of Educational Achievement (IEA)

Table 16.—Student-level correlations between background variables and scores, France,
centered: 1995

Father
present

Number
of books

Computer
present Press

Mother’s
education

Father’s
education

Age Math
score

Father present  1
Number of books  0.07  1
Computer present -0.01  0.21  1
Press -0.01  0.03  0.06  1
Mother’s education  0.00  0.26  0.18  0.09  1
Father’s education -0.04  0.24  0.20  0.09  0.62  1
Age -0.08 -0.11 -0.03 -0.08 -0.13 -0.11  1
Math score  0.06  0.04  0.07  0.08  0.10  0.06 -0.19 1

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)
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At the between-classroom level as well, most of the correlations between background

factors and scores were lower in France (Table 17) than in the U.S.  The negative correlation

between scores and mean age, however, was much stronger in France, and the correlation

between press in mathematics and scores was roughly the same in both countries.  In France,

mean mother’s and father’s education showed somewhat lower correlations with scores,

somewhat lower correlations with computer present, and much smaller correlations with father

present.  This suggests that at the aggregate level, the proportion of students with fathers present

is less of an SES proxy in France than in the U.S.

Multilevel Model

 The final two-level model of mathematics scores in the French sample included only

four variables at each level.  Three of the variables included in the U.S. model—father present,

age (and age2), and the composite press variable—were included in the French model as well

(Table 18).  Mother’s education, which was not significant in the U.S. models, did have a

significant effect in France, despite the smaller bivariate correlation shown by this variable in

France.  Two of the variables that were significant predictors in the U.S.—computer present and

number of books—were not significant predictors in France.
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Table 17.—Classroom-level correlations between background variables and scores, France:
1995

Father
present

Number
of books

Computer
present Press

Mother’s
education

Father’s
education

Age Math
score

Father present  1
Number of books -0.13  1
Computer present -0.10  0.44  1
Press -0.14  0.05  0.02  1
Mother’s education -0.03  0.71  0.54  0.05  1
Father’s education -0.11  0.67  0.53  0.10  0.86  1
Age  0.03 -0.37 -0.30 -0.17 -0.51 -0.49  1
Math score  0.10  0.48  0.29  0.26  0.50  0.45 -0.55 1

Source:  Third International Mathematics and Science Study, Population 2 data set, International Association for
the Evaluation of Educational Achievement (IEA)

Table 18.—Two-Level Model of Mathematics Scores, France Grade 8: 1995

Variable Effect SE t p CILBa CIUBb

Intercept 592.6 151.7  3.9 0.00 289.8  895.4
Within class (b)
Mother's education  4.6   1.7  2.7 0.01    1.2     8.0
Father present  8.9   4.0  2.2 0.03    0.9   17.0
Press  8.6   4.1  2.1 0.04    0.5  16.7
Age    -18.2   3.2 -5.6 0.00  -24.6 -11.7
Age2 -0.6   2.7 -0.2 0.81    -6.0    4.7
Between-class (c)
M Mother's education  26.4   5.1  5.2 0.00   16.2   36.7
M Father present  59.5 22.8  2.6 0.01   14.0 104.9
M Press  45.0 15.4  2.9 0.00   14.3   75.7
M Age -23.0 10.1 -2.3 0.03  -43.1   -2.8
M Age2 -23.3 15.7 -1.5 0.14  -54.7    8.0
Residual variances
r2 (within) 4040.8

t (between)   554.7
a Lower bound of 95% confidence interval around parameter estimate
b Upper bound of 95% confidence interval around parameter estimate
NOTE: All estimates of error and significance reflect jackknifed estimates.

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

The estimated within-classroom effect of the father being present was much larger in

France than in the U.S., where this variable was included in the final model only because it was a
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significant predictor at the between-classroom level.  In France, the model estimated that within

classrooms, students with fathers present will score about 9 points higher than those without,

which is a difference of 12 percent of the French standard deviation of 75 points.  (Recall that the

standard deviation of performance is considerably smaller in France than in the U.S.)  The

effects of mother’s education are somewhat larger.  The model estimates that students whose

mothers are in the highest category will score on average 18 points, or one-fourth of a standard

deviation, above their classmates with mothers in the lowest category.  The estimated within-

classroom effects of press and age were similar in the two countries, except that the negative

effect of age was not curvilinear in France.  In France as in the U.S., the effect of age was

negative.

At the between-classroom level, all of the predictors included in the French model other

than the quadratic term for age were significant.  Although the within-classroom effect of father

present was much larger in France than in the U.S., the between-classroom effect of the

proportion of fathers present was somewhat smaller in France than in the U.S.  The effect of

press was similar in the two countries.  The effect of mean mother’s education was sizable.

The predictive power of the model of eighth-grade mathematics in France (Table 19) is in

some respects quite similar to the corresponding findings in the U.S. (Table 11).  In France as in

the U.S., the model predicted much of the between-classroom variance in mathematics, although

somewhat less in France: 59 percent in France, compared to 77 percent in the U.S.  In both

countries, the model predicted very little of the within-classroom variance: 5 percent in France

and 4 percent in the U.S.

Table 19.—Total and Predicted Variance in Mathematics Scores at Each Level, France
Grade 8: 1995

Between
classroom

Within
classroom

Total variance at level 1356 4232
Percent of variance at level    24    76
Variance predicted by variables at level  801   191
Percent of variance at level predicted

by variables at level   59      5
Percent of total variance predicted by

variables at  level  14      3
Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)
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In another sense, however, the between-classroom predictors were much less powerful in

France than in the U.S.  The predicted between-classroom variance is much smaller in France

(801) than in the U.S. (2,532).  The percent of between-classroom variance predicted by the

model is nonetheless almost as high in France because the total between-classroom variance is

much smaller in France (1,356) than in the U.S. (3,299).  For this reason, the between-classroom

variables predict much less of the total variance in France (14 percent) than in the U.S. (31

percent), even though the total score variance is considerably smaller in France.
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Decomposing Performance Variation in Hong Kong

Bivariate Relationships

Student-level (uncentered) correlations showed generally very weak relationships

between background variables and scores in Hong Kong (Table 20).  The highest correlations

between scores and background variables were those with press, and those were below .20.

Except for the correlation between mother’s and father’s education, the correlations among

background variables were generally small.  An exception was the negative correlation (-.46)

between born in country and age.  This was the only clue in the correlation matrix about the born

in country variable, which had substantial negative effects in the models described below.  As in

the U.S. and France, centering the student-level correlations reduced many of them (Table 21).
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Table 20.—Student-level correlations between background variables and scores, Hong Kong, uncentered: 1995

Father
present

Number
of books

Computer
present Press

Born in
country

Mother’s
education

Father’s
education

Age Math
score

Father present  1
Number of books -0.02  1
Computer present  0.04  0.24  1
Press  0.02  0.05  0.07  1
Born in country  0.03  0.05  0.08  0.00  1
Mother’s education  0.02  0.22  0.21  0.04 -0.01  1
Father’s education -0.01  0.26  0.26  0.08 -0.05  0.60  1
Age -0.04 -0.04 -0.07 -0.05 -0.46 -0.06 -0.01  1
Math score  0.03  0.14  0.13  0.18 -0.05  0.14  0.15 -0.04 1
Source:  Third International Mathematics and Science Study, Population 2 data set, International Association for the Evaluation of Educational
Achievement (IEA)

Table 21.—Student-level correlations between background variables and scores, Hong Kong, centered: 1995

Father
present

Number
of books

Computer
present Press

Born in
country

Mother’s
education

Father’s
education

Age Math
score

Father present  1
Number of books -0.03  1
Computer present  0.02  0.18  1
Press  0.01  0.02  0.02  1
Born in country  0.02  0.04  0.09  0.00  1
Mother’s education  0.01  0.14  0.13  0.00  0.01  1
Father’s education -0.01  0.17  0.17  0.04 -0.04  0.54  1
Age -0.02 -0.02 -0.05 -0.03 -0.43 -0.06 -0.01 1
Math score -0.03  0.00 -0.03  0.07 -0.08 -0.02  0.00 0.03 1
Source:  Third International Mathematics and Science Study, Population 2 data set, International Association for the Evaluation of Educational
Achievement (IEA)
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Some of the correlations among classroom means, however, were substantial (Table 22),

and the patterns among these correlations were somewhat different from those in the U.S. or

France.  Mean scores showed correlations of more than .50 with six of nine background

variables—all but percent father present (.39), age (-.28), and born in country (roughly zero).  At

the classroom level, the negative correlation between age and born in country increased to -.75.

Numerous of the other correlations between background variables were also sizable, including

number of books and computers present (.69), computer present and press (.46), press and

mother’s and father’s education (both about .4), and mother’s and father’s education (.90).
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Table 22.—Classroom-level correlations between background variables and scores, Hong
Kong: 1995

Father
present

Number
of books

Computer
present Press

Born in
country

Mother’s
education

Father’s
education

Age

Father present  1
Number of books  0.18  1
Computer present  0.26  0.69  1
Press  0.16  0.30  0.46  1
Born in country  0.23  0.12  0.08 -0.05  1
Mother’s education  0.14  0.70  0.74  0.44 -0.11  1
Father’s education  0.20  0.74  0.78  0.40 -0.08  0.90  1
Age -0.36 -0.20 -0.25 -0.19 -0.75 -0.03 -0.04  1
Math score  0.39  0.58  0.66  0.64 -0.02  0.58  0.56 -0.28
Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA) Multilevel Model

The final model in Hong Kong was similar to that in the U.S. in terms of selection of

variables and predictive power, but it was quite different in some specific details.

The selection of variables in the Hong Kong model differed from that in the U.S. in two

respects.  Born in country remained in the Hong Kong model, while age did not.

In Hong Kong, only two variables showed significant relationships to scores within

classrooms: press, which was positively related to scores, and the ‘born in country’ dichotomy,

which in this case was negatively related to scores (Table 23).  The within-classroom coefficients

for father present and computer present were also negative but were not statistically different

from zero.
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Table 23.—Two-Level Model of Mathematics Scores, Hong Kong Grade 8: 1995

Variable Effect SE t p CILBa CIUBb

Intercept -424.8 140.6 -3.0 0.00 -708.6 -141.0
Within class (b)
Number of books     0.3    1.2   0.3 0.78     -2.0     2.7
Computer present   -3.8    3.1 -1.2 0.23   -10.0     2.5
Father present   -7.4    6.1 -1.2 0.24   -19.7     5.0
Press   10.3    2.8   3.7 0.00      4.6    16.0
Born in country -19.1    5.4 -3.5 0.00   -30.1    -8.2
Between-class (c)
M Number of books   44.1 16.1  2.7 0.01     11.7   76.6
M Computer present   89.8 41.8   2.1 0.04      5.4 174.1
M Father present 326.9 86.8   3.8 0.00  151.8 502.1
M Press 174.5 35.1   5.0 0.00  103.5 245.4
M Born in country -44.7 37.2 -1.2 0.24 -119.9   30.4
Residual variances
r2 (within) 5485.0

t (between) 1406.2
a Lower bound of 95% confidence interval around parameter estimate
b Upper bound of 95% confidence interval around parameter estimate
NOTE: All estimates of error and significance reflect jackknifed estimates.

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

The between-classroom results in Hong Kong were markedly different from those in the

corresponding U.S. model.  The coefficient for the proportion of fathers present was huge: 327,

vs. 90 in the U.S.  The range of percent father present, however, was far more restricted in Hong

Kong than in the U.S., ranging in this sample only from 76 to 100 percent.  Nonetheless, these

results thus suggest that if all other variables in the model were held constant, the mean score in

a classroom with 76 percent of fathers present would be 78 points (0.79 SD) lower than that in a

classroom with 100 percent of fathers present.  The estimated effect of the mean press variable

was also very large: 174, about four times as large as in the U.S.  The effect of the percent

having computers was almost two and a half times as large as in the U.S. model.  The effect of

the mean number of books was similar in the two countries.

Despite these striking differences in the effects of some aggregate variables, the Hong

Kong mathematics model was somewhat similar to the U.S. model in predictive power, showing

the by now familiar pattern of strong prediction between classrooms and weak prediction within
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classrooms.  The Hong Kong model was notably weaker in terms of within-classroom prediction

than were the models in the U.S. and France, but the model predicted little of the within-

classroom variance in any of the three countries.  The percentage of total variance within

classrooms was similar in Hong Kong and the U.S. (between 55 and 60 percent in both), but the

Hong Kong model predicted only 1 percent of this within-classroom variance (Table 24).  The

between-classroom variance was somewhat greater in Hong Kong than in the U.S., but the model

predicted nearly as large a percentage of it: 69 percent in Hong Kong, compared to 77 percent in

the U.S. mathematics model.  In Hong Kong, as in the U.S., the between-classroom variables

predicted 31 percent of the total score variance.

Table 24.—Total and Predicted Variance in Mathematics Scores at Each Level, Hong Kong
Grade 8: 1995

Between
classroom

Within
classroom

Total variance at level 4543 5557
Percent of variance at level    45    55
Variance predicted by variables at level 3137    73
Percent of variance at level predicted

by variables at level    69     1
Percent of total variance predicted by

variables at  level    31     1

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)
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Decomposing Performance Variation in Korea

Bivariate Relationships

The simple (uncentered) student-level correlations in Korea among background variables

and between those variables and scores were not strikingly different from those in the other

countries.  The strongest correlation between math scores and any of the background factors was

with number of books (r = .34; Table 25).  Born in country and age showed essentially no

relationship with scores, and the other background variables correlated between .18 and .27 with

scores.  The correlation between mother’s and father’s education, .72, was similar to that in

France and larger than that in the U.S. or Hong Kong.  The other background variables showed

modest intercorrelations, none greater than .34 and most considerably lower.
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Table 25.—Student-level correlations between background variables and scores, Korea,
uncentered: 1995

Father
present

Number
of books

Computer
present Press

Born in
country

Mother’s
education

Father’s
education

Age

Father present  1
Number of books  0.12  1
Computer present  0.04  0.22  1
Press  0.08  0.22  0.13  1
Born in country  0.00  0.07 -0.01  0.01  1
Mother’s education  0.08  0.26  0.23  0.16  0.00  1
Father’s education  0.07  0.34  0.25  0.17  0.02  0.72  1
Age -0.02 -0.05 -0.02 -0.04 -0.04 -0.08 -0.07  1
Math score  0.06  0.34  0.18  0.27  0.04  0.22  0.27 -0.03

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

The student-level correlations centered around classroom means, however, were

appreciably different in Korea than in the other countries.  Because very little of the performance

variance in Korea lies between classrooms, removing that variance by centering shrank the

correlations less in Korea than in the other countries.

Thus, for example, the centered correlation between press and scores was .25 (Table 26),

only trivially less than the uncentered correlation above.  The correlations between the two

parental education variables and scores shrank noticeably when centered, but they remained

considerably larger than the corresponding centered correlations in the U.S., France, or Hong

Kong.  The correlation between scores and number of books in the home shrank modestly.

Correlations among classroom means in Korea were within the range of those found in

the other three countries.  The correlations between means of the parental education variables

and mean scores were .63 and .69 (Table 27), roughly comparable to those in Hong Kong and the

U.S.  The correlation between mean scores and the press variable, .50, was stronger than in the

U.S. and France but weaker than in Hong Kong.  The correlations between mean scores and the

means of the possessions-in-home variables were within the range of those in other countries.

The correlations between mean scores and the proportion of fathers present was markedly lower

than in Hong Kong or especially the U.S. but larger than in France.



Table 26.—Student-level correlations between background variables and scores, Korea, centered: 1995

Father
present

Number
of books

Computer
present Press

Born in
country

Mother’s
education

Father’s
education

Age Math
score

Father present  1
Number of books  0.10  1
Computer present  0.02  0.17  1
Press  0.06  0.19  0.11  1
Born in country  0.00  0.07 -0.01  0.01  1
Mother’s education  0.07  0.18  0.15  0.13  0.00  1
Father’s education  0.05  0.26  0.16  0.14  0.03  0.65  1
Age -0.02 -0.04 -0.02 -0.04 -0.03 -0.07 -0.06  1
Math score  0.05  0.30  0.12  0.25  0.05  0.15  0.19 -0.03 1

Source:  Third International Mathematics and Science Study, Population 2 data set, International Association for the Evaluation of Educational
Achievement (IEA)

Table 27.—Classroom-level correlations between background variables and scores, Korea: 1995

Father
present

Number
of books

Computer
present Press

Born in
country

Mother’s
education

Father’s
education

Age Math
score

Father present  1
Number of books  0.29  1
Computer present  0.26  0.56  1
Press  0.21  0.43  0.34  1
Born in country  0.09  0.06 -0.04 -0.06  1
Mother’s education  0.17  0.66  0.62  0.41  0.00  1
Father’s education  0.21  0.71  0.66  0.45 -0.05  0.91  1
Age -0.03 -0.16 -0.07 -0.04 -0.11 -0.17 -0.19  1
Math score  0.26  0.66  0.63  0.50 -0.02  0.63  0.69 -0.06 1

Source:  Third International Mathematics and Science Study, Population 2 data set, International Association for the Evaluation of Educational
Achievement (IEA)
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Multilevel Model

The results of the two-level model of mathematics scores in Korea differed in one

fundamental respect from those in the other three countries: the prediction of within-classroom

variance was stronger in Korea than elsewhere.

The selection of variables of the final Korean model included number of books, computer

present, press, age and age squared, and father’s education.  It differed from the U.S. model in

excluding father present and including father’s education, which was included only because of a

significant coefficient at the between-classroom level.

With the exception of age, all of the variables included in both the U.S. and Korean

models had much larger within-classroom coefficients in the Korean model.  For example, the

within-classroom coefficient for the number of books in the home was about 2.5 times as large in

Korea as in the U.S., and the t was about twice as large (Table 28; compare Table 10).  The

within-classroom coefficient for computer present was also about 2.5 times as large in Korea as

in the U.S., and the coefficient for press was almost 4 times as large.  The Korean coefficients

were also much larger than those in the French and Hong Kong models, to the extent that the

same variables were included.
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Table 28:—Two-Level Model of Mathematics Scores, Korea Grade 8: 1995

Variable Effect SE t p CILBa CIUBb

Intercept   27.9 345.5  0.1 0.94 -660.5 716.3
Within class (b)
Number of Books   20.2    1.8 11.5 0.00    16.7   23.7
Computer present   10.9    3.9   2.8 0.01     3.2   18.7
Press   36.2    4.2   8.7 0.00   27.9   44.5
Father’s education   9.5    2.0   4.7 0.00    5.5   13.5
Age  -6.0    6.2  -1.0 0.34 -18.4    6.4
Age2 -14.8    5.6  -2.7 0.01 -26.0  -3.7
Between-class (c)
M Books  16.2   7.3  2.2 0.03   1.7 30.7
M Computer  44.5 16.0  2.8 0.01 12.5 76.4
M Press  47.4 17.2  2.8 0.01 13.1 81.7
M Father’s education  18.8   5.6  3.4 0.00   7.7 30.0
M Age  20.5 24.1  0.8 0.40 -27.6 68.5
M Age2 -26.2 11.9 -2.2 0.03 -50.0 -2.4
Residual variances
r2 (within) 9290.6

t (between)     48.0
a Lower bound of 95% confidence interval around parameter estimate
b Upper bound of 95% confidence interval around parameter estimate
NOTE: All estimates of error and significance reflect jackknifed estimates.

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

In contrast, the between-classroom effects of background variables were not especially

large in Korea.  For example, the between-classroom coefficient for press was similar in Korea

and in the U.S.  The estimate for proportion with computers present was slightly larger in Korea,

but the estimate for mean number of books was much smaller in Korea (16) than in the U.S. (46).

The relatively strong level of within-classroom prediction in Korea is clearer when one

looks at the decomposition of total and predicted variance (Table 29).  The within-classroom

variables predict 13.4 percent of the within-classroom score variance.  This compares to 4

percent in the U.S. (Table 11).  The within-classroom variance is far larger in absolute terms in

Korea than in the U.S., however, and considerably larger as a percent of total variance (93

percent in Korea, vs. 59 percent in the U.S.).  Therefore, the within-classroom variables predict a

much larger percentage of the total score variance in Korea (12.4 percent) than in the U.S. (2

percent).
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Table 29.—Total and Predicted Variance in Mathematics Scores at Each Level,
Korea Grade 8: 1995

Between
classroom

Within
classroom

Total variance at level 799 10722
Percent of variance at level    7      93
Variance predicted by variables at level

751   1431
Percent of variance at level predicted

by variables at level  94      13
Percent of total variance predicted by

variables at  level    7      12

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

The between-classroom portion of the model predicted nearly all (94 percent) of the

between-classroom variance in scores in Korea (Table 29), far more than in our other three

countries.  The total between-classroom variance is very small in Korea, however.  Therefore,

the between-classroom part of the model predicts relatively little of the total mathematics score

variance, only 6.5 percent.  In contrast, the between-classrooms part of the model predicts 31

percent of the total mathematics score variance in the U.S. and Hong Kong and 14 percent in

France.

Comparing the Multilevel Models Across Countries

Perhaps the single most striking consistency in the results reported here is the models’

prediction of most of the performance variance between classrooms but little of the variance

within classrooms.  There are important variations in the predictive power of the models,

discussed below, but this general pattern held true in all four countries.  In all of our samples, our

model predicted at least 59 percent of the between-classroom variance  (see Table 30).  The

prediction of within-classroom variance was modest in Korea and very weak in all other

countries.
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Table 30.—Percent of Variance at Each Level Predicted by Final Models,
Grade 8 Mathematics: 1995

Between
Classroom

Within
Classroom

United States 77  4
France 59  5
Hong Kong 69  1
Korea 94 13

The consistency of this strong prediction of between-classroom variance is all the more

striking in the light of the sparseness of the models and the weak measurement of social

background.  Our models included few predictors.  The variables available in TIMSS do not

necessarily include those that researchers in participating countries would suggest are the most

important predictors of achievement.  For example, TIMSS does not include income,

race/ethnicity, or inner-city location, all three of which are known to be important predictors of

performance in the U.S.  Similarly, one of the German TIMSS National Research Coordinators

indicated that both state (Land) and inner-city location are correlated with performance in

Germany (Baumert, 1998).  The National Research Coordinator for Korea indicated that income,

type of community (urban, suburban, rural) and geographic region are all somewhat correlated

with performance in Korea (Im, 1998).  In addition, the selection of variables for use in the

models was constrained in some instances by problems with the data.

Thus, the variables included in the models were a potentially weak proxy for those that

would best show the relationships between score variance and background variables in each

country.  It is possible that the use of a stronger set of predictors would have substantially

increased the percentage of variance predicted at one or both levels, particularly the within-

classroom level, at which our prediction was very weak.  We cannot determine whether this is

the case, however.  In the general case, the degree of prediction may not be substantially

lessened by the weakness of collinear predictors if enough of them are used in the model (e.g.,

Berends and Koretz, 1996).

We have less confidence in the specific parameter estimates we obtained, particularly in

cases in which the estimates varied markedly among countries.  There are several reasons for this

caution.  First, as noted earlier, parameter estimates in multi-level models are often quite

sensitive to specification differences (Kreft and DeLeeuw, 1998), and our selections of variables
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were necessarily somewhat happenstance, constrained as they were by the limitations of the

TIMSS database.  Models that included additional variables (such as family income) or better-

measured constructs might have yielded substantially different estimates of the parameters in our

models.  Second, EDA showed that some variables behaved quite differently across countries.

Other operationalizations of these constructs might have altered these differences and might

therefore have produced different parameter estimates.

To test the importance of the particular selections of variables in our final models, we ran

a constant, minimal model in each of the four countries, including the individual and aggregate

values of number of books, computer present, press, age, and age squared.  This fixed model

predicted almost as much of the variance in performance as did our final models, which were

selected to optimize prediction in each country and subject (Table 31; compare Table 30).  This

finding is an additional reason to suspect that the differences in selection of variables between

our four countries and the specific parameter estimates should be interpreted with caution.  The

ideal models that included the variables that actually determine performance variation could look

quite different – that is, they could include different variables and have somewhat different

estimates of the parameters already in our models – even though these better models might not

predict a great deal more of the variation in performance.

Table 31.—Percent of Variance at Each Level Predicted by Fixed Model,
Grade 8 Mathematics: 1995

Mathematics
Between

Classroom
Within

Classroom
United States 72  4
France 54  4
Hong Kong 67  1
Korea 86 12

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

Differences in the strength of prediction across the four countries therefore may be

substantively more important than differences in parameter estimates.  One striking difference in

prediction becomes apparent when one looks at the prediction of total variance rather than

within-level variance.  In the U.S. and Hong Kong, roughly one third of the total variance is



80

predicted by the models, in both cases largely because of variation in between-classroom

predictors (Table 32).  The models predict much less of the variance in France (18 percent) and

Korea (19 percent).

Table 32.—Percent of Total Variance Predicted by Predictors at Each Level,
Final Models, Grade 8 Mathematics: 1995

Between
Classroom

Within
Classroom

Both
Levels

United States 31 2 34
France 14 3 18
Hong Kong 31 1 32
Korea 7 12 19

    NOTE: Entries may not sum to totals because of rounding.

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

The four countries also differ in terms of the relative predictive power of the models

between the student and classroom levels.  Again, the U.S. and Hong Kong are very similar:

almost all of the predicted variance in each country is attributable to between-classroom

variation in the predictors (Table 32).  France and Korea, however, differ in this respect, even

though the percentage of total variance predicted at both levels is nearly identical in the two

countries.  In France, most of the predicted variance is attributable to the classroom-level

predictors, and France differs from the U.S. and Hong Kong in that the prediction is much

weaker at the classroom level.  In Korea, in contrast to all three other countries, more of the total

prediction is due to within-classroom variation in predictors.  This can be seen as a reflection of

two factors.  First, even though the model predicted only a modest percentage of the within-

classroom variance in Korea, the predicted percentage was considerably larger than in the other

three countries (Table 30).  Second, a larger percentage of the total variance lies within

classrooms in Korea (93 percent) than in France (76 percent), the U.S. (59 percent), or Hong

Kong (55 percent).  The product of these two percentages, which is the percent of total variance

predicted by within-classroom predictors, is therefore much larger in Korea than in the other

countries.

There are several possible non-exclusive explanations for these cross-national differences

in predicted variance.  First, the fixed model and our final models may be a better selection of

variables for some countries than for others.  Changing to a fixed set of variables drawing from
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the variables in our set did not have much of an impact, but it is possible that including other

variables would have.  Second, taking our models as a given, stronger prediction in one country

than in another could stem from larger estimated effects of some variables in the model, greater

variability in the predictors themselves, or both.

To explore whether stronger prediction of scores in some countries simply reflects greater

variance in the predictors, we took two further steps with our fixed model, which removes the

effects of model differences across countries.  First, we compared predicted amounts of variance,

rather than predicted percentages, from one country to another.  We also obtained estimates of

the variability of the predictors themselves, decomposed into within- and between-classroom

components.  We then compared these estimates to see whether differences among countries in

the amount of predicted score variance were paralleled by differences in the amount of variance

in the predictors themselves.

The predicted variances from the fixed model (Table 33) are largely consistent with the

percentages from the final models.  The U.S. and Hong Kong are quite similar in terms of

predicted variances, except that the predicted within-classroom variance is even smaller in Hong

Kong (Table 33).  France is similar to the U.S. in having little within-classroom variance

predicted, but there is much less predicted between-classroom variance in France.13  Korea has a

small amount of predicted between-classroom variance, but there is not much between-classroom

variance to predict; the model predicts most of what variance there is.  The more interesting

finding in Korea is that the predicted within-classroom variance is far larger there than in the

other three countries.

Table 33.—Variance Predicted by Predictors at Each Level,
Fixed Model, Grade 8 Mathematics: 1995

Between
Classroom

Within
Classroom

United States 2389  197
France   733  179
Hong Kong 3028    51
Korea   686 1339

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

                                                
13 Recall that the total score variance is markedly smaller in France than in the other three countries.  That is
why the smaller percentage predicted translates into a much smaller amount of predicted variance.
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We then decomposed the variance of the predictors in the fixed model into within- and

between-classroom components within each country.  Because these variables are somewhat

collinear, and the collinearity is not constant across countries, looking at one variable at a time is

not fully sufficient to ascertain the impact of predictor variance on the country differences in

prediction of score variance.  However, given that the collinearity among these variables is not

very high in these data, this should provide a reasonable if imprecise view.

Differences in predictor variance appear not to account for the much larger predicted

score variance within classrooms in Korea.  The within-classroom variance of all predictors other

than age and age squared was comparable in the U.S. and Korea (Table 34).  Age is more

variable in Korean classrooms than in U.S. classrooms, but age was a relatively weak predictor

of within-classroom score variance in Korea.  This is consistent with the larger within-classroom

coefficients in the Korean model, compared to the U.S. model.

The contribution of predictor variance to the difference between France and the U.S. in

the prediction of between-classroom score variance, however, is ambiguous.  France shows less

between-classroom variance in two predictors, number of books and computer present, and the

former is a relatively powerful predictor of score variance in France.  On the other hand, France

shows much more between-classroom variance in age, and age is also a strong predictor of score

variance.

Table 34.—Between- and Within-Classroom Variance of Predictors used in,
Fixed Model, Grade 8 Mathematics: 1995

USA France Hong Kong Korea
Between Within Between Within Between Within Between Within

Number of Books 0.150 0.760 0.080 0.680 0.110 0.970 0.080 0.870
Age 0.030 0.230 0.180 0.420 0.040 0.490 0.000 0.130
Age2 0.010 0.130 0.020 0.580 0.070 1.700 0.000 0.130
Computer present 0.040 0.210 0.010 0.240 0.020 0.220 0.020 0.220
Press 0.010 0.220 0.010 0.210 0.020 0.280 0.010 0.280

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)
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Recall that although Hong Kong is similar to Japan and Korea in terms of its overall

mean and standard deviation, it is similar to the U.S. – and strikingly different from Japan and

Korea – in terms of the decomposition of variance into within- and between-school components.

Hong Kong is also very similar to the U.S. in terms of the predictive power of the models both

within and between classrooms.  Table 34 shows that Hong Kong and the U.S. are also similar in

terms of the within- and between-classroom variance of the predictors themselves, with the

exception of age.
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CONCLUSIONS

We begin by noting implications for policy and future research.  We then discuss issues

for other secondary analysts and raise issues NCES may wish to consider in the design of future

international surveys of achievement.

Implications for Policy and Research

This study was prompted in part by a widespread view that performance variance in the

U.S. is unusual.  This view has sometimes been made explicit – for example, in Berliner and

Biddle’s assertion that “The achievement of American schools is a lot more variable than is

student achievement from elsewhere” (1995, p. 58, italics in the original).  In other instances, this

view of variability is implicit, as when the scores for U.S. states or districts are compared to

national averages from other countries.  In response, we asked whether the distribution of

performance in the U.S. is anomalous, how the variance in performance is distributed in the U.S.

and other countries, and how well background factors can predict that variation.

TIMSS suggests strongly that the variation in performance in the U.S. is not anomalous.

In Population 2, the U.S. variance is large but not exceptional in science and more nearly average

in mathematics.  Contrary to some expectations, the distribution of scores is not particularly

skewed in the U.S., and in eighth-grade mathematics, it is right- rather than left-skewed.

Moreover, differences among countries in the variance of performance do not clearly follow

stereotypes about their homogeneity.  Socially homogeneous Japan, for example, shows a bit

more variation than the U.S. in mathematics, while socially heterogeneous France shows

considerably less.

When performance variance is broken into within- and between-classroom components,

however, the story becomes more complex.  The U.S., Australia, Germany and Hong Kong show

one pattern, in which nearly half of the variance lies between classrooms.  Japan and Korea lie at

the other extreme; most of their variance lies within classrooms, while very little lies between.

The result is that classrooms in Japan and Korea resemble each other in terms of mean

performance much more than do classrooms in the U.S., Germany, Hong Kong, and Australia.

France falls between these two poles.  By the same token, students in the typical classrooms in

Japan and Korea show much greater variability in performance than do their counterparts in the

U.S., Germany, Hong Kong, and Australia.
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While the U.S. is similar to many other countries in the overall variability of student

performance in mathematics and is similar to several others we investigated in the decomposition

of performance variation within and between classrooms, TIMSS does not fully address the

reasonableness of Berliner and Biddle’s (1995) assertion that U.S. schools are far more variable

than are schools elsewhere.  Of the countries we considered, only the U.S. and Australia

provided samples that allow one to estimate the variability between schools, and one cannot

draw inferences about school variability from the TIMSS data on between-classroom variability.

For example, if tracking is entirely absent in Japan and Korea, classrooms within schools should

be randomly equivalent.  In this case, much of the between-classroom variance in these countries

might lie between schools – in comparison to the U.S. and Australia, where our preliminary

analysis found that most of the between-classroom variance lies within schools.  However, only a

sample that includes multiple classrooms per school would permit testing this hypothesis.

What do the present findings imply about the reasonableness of comparing means for

U.S. states and districts to averages for other nations?  We cannot fully answer that question

because the TIMSS design does not yield evidence pertaining to districts or states in the U.S. or

about similar units in other countries, such as German Länder.  However, the wide dispersion of

classroom means in Australia and Germany, and the smaller but still substantial dispersion of

means in France, suggests that these comparisons may be misleading.  Just as some states in the

U.S. compare more favorably than do others to means of other countries, some areas in those

other countries are likely to score markedly better than the averages for those countries.  In

contrast, classrooms in Japan and Korea vary much less in average performance, so comparisons

between U.S. states and the means in Japan and Korea may be more meaningful.  However, even

in Korea and Japan, the standard deviations of classroom means are substantial, and the standard

deviation of school means, which cannot be estimated from TIMSS, may be sizable as well.

Our analyses cannot identify causes of the cross-national differences we found, but they

raise a number of intriguing possibilities that warrant further investigation.  One question is what

factors might underlie the patterns in Korea: little total variance between classrooms and an

unusually large amount of predicted variance within classrooms.

Differences in stratification in terms of ability might contribute to the differences in

findings between the U.S. and Korea.  This hypothesis is consistent with the differences between

the U.S. and Korea in terms of both the decomposition of variance and the ability of the models
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to predict the within-classroom variance.  We know that Korea’s policy is not to track students

into classes by ability in eighth-grade mathematics (Im, 1998).  If schools as well as classrooms

are relatively little stratified in Korea in terms of background factors associated with student

performance, then more of the relevant variance of these background variables may lie within

classrooms in Korea than in France, the U.S., or Hong Kong.  Note that the total variance in the

background factors included in the fixed model is not larger within classrooms in Korea than in

the U.S. (Table 34).  However, more of the variance that predicts student performance may lie

within classrooms in Korea.  In contrast, in countries like the U.S., the combination of residential

stratification and tracking would result in much of the relevant variance of these background

variables lying between classrooms rather than within them.

However, other factors, such as instructional differences, might also contribute to the

differences between Korea and the other countries examined.  For example, instruction might

vary less among classrooms in Korea than in Hong Kong or the U.S.  This might help explain the

lack of performance variation between classrooms.  Instructional factors might also contribute to

the greater within-classroom predictive power of background factors in Korea.  Although many

current U.S. reform efforts aim for both higher standards and greater equity of outcomes, it is

possible that all other factors being equal, a very high level of standards could increase score

variance, as the more able students might be better able to take advantage of more difficult

material.  Curriculum differences might also correlate differently with background factors from

one country to another.  If curriculum differences are less highly correlated with background

factors in Korea than in the U.S., that too could contribute to the patterns we found.

The results for Hong Kong also raise interesting questions.  Four Asian countries,

Singapore, Korea, Japan, and Hong Kong, ranked highest in grade 8 mathematics in TIMSS.

Hong Kong is also similar to Japan and Korea, but not Singapore, in terms of its simple standard

deviation of scores.  Our results, however, showed that in both the decomposition and prediction

of performance variation, Hong Kong is very similar to the U.S. and strikingly different from

Korea and Japan.  Hong Kong is also similar to the U.S. in terms of the decomposition of the

variance of predictor variables.  Further investigation of factors that might cause Hong Kong to

resemble other highly developed Asian countries in some respects but the U.S. in other respects

could help avoid simplistic explanations of cross-national differences in performance.
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Finally, several aspects of performance variation in France – the relatively small overall

standard deviation of scores, and the small total and predicted between-classroom variance –

could have important implications for policy.  As noted earlier, it is not clear from our results

whether lesser between-classroom variation in predictors contributed to this, but the univariate

decompositions of predictor variance (Table 34) do not suggest that this was a major factor.

Some observers maintain that the French curriculum is highly standardized, even compared to

that of many other countries with national curricula.  If so, that uniformity could contribute to a

smaller between-classroom variance.  In addition, by weakening any correlations between

curricular variables and social background, uniformity of curriculum could also lessen the

prediction of score variance by background factors.

Further analysis of TIMSS data may help shed light on these questions.  For example, the

present analysis could be expanded to incorporate instructional and curriculum variables as well

as background factors.  The TIMSS data, however, will not be sufficient to address key aspects

of these questions.  They cannot provide useful data about variations in larger aggregates,

including schools and states (and their equivalents).  Moreover, in most countries, TIMSS

collected very little information about stratification, either within or between schools.   These

gaps could be addressed either by modifications of future international surveys or by the use of

smaller, more focused studies in selected countries.

Implications for Secondary Analysis

Because of its prominence and richness, TIMSS is likely to attract the interest of

secondary analysts.  Although the methods employed by analysts will vary with their purposes,

the results presented here point to a number of suggestions that should be pertinent to a wide

range of secondary analysis.

This study clearly indicates the importance of using a multi-level approach in exploring

the correlates of performance in TIMSS.  Even when analysis is restricted to a single country, a

multi-level approach is needed when the relationships among variables vary across levels, as

they did in the models presented here.  Comparative international studies increase the importance

of a multi-level approach, however, because the differences among levels also can vary across

countries.  A good illustration is the finding that the contrast between within- and between-

classroom prediction is markedly different in Korea than in the U.S., France, or Hong Kong.
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Exploratory data analysis (EDA) should normally be a precursor to formal modeling of

survey databases, and international comparisons make this stage of analysis particularly

important.  Variables may behave very differently in different countries.  A variable that shows

good dispersion of responses across categories in one country, for example, may be nearly

useless in another because of a concentration of responses in one or two categories.  Similarly, a

variable that shows predicted relationships with other variables in one country may show

unexpected relationships in another country.  Anomalies in the data, such as exceptions to

monotonic relationships, may also arise only in certain countries.  All of these possibilities were

illustrated in the results of EDA presented above, and there were additional examples in

exploratory analyses that we did not present here.  When the analyst expects to use multi-level

models, this EDA should be carried out within levels as well as in the total sample.

In some contexts, hierarchical modeling adds seriousness to the conventional warning

that statistical significance is no substitute for hypotheses or strong theory as a guide for

selecting or having confidence in the analyst’s choice of variables.  One reason that this caution

is underscored in multilevel modeling is that the relationships expected at the level of individual

may not hold at the aggregate level, and indeed aggregate relationships may depend on the level

of aggregation chosen.  For example, our hierarchical analysis of the predictors of mathematics

performance in NELS found that results were sensitive to the choice of classroom or school as

the second level of analysis.  In that case, we have prior knowledge that makes the difference

sensible: the presence of tracking in many U.S. schools.  In some cases, however, the analyst will

have little basis in prior research for predicting or interpreting aggregate relationships.

There are a number of steps an analyst can take in response to this uncertainty.  One is to

examine the collinearity of variables at the aggregate level to explore the possible effects of

different choices of variables.  A simple approach is to run an ordinary least squares regression at

the aggregate level and examine the tolerance of each variable.  The tolerance is (1-R2) from a

regression of a given predictor on all other predictors in the model; it indicates the proportion of

variance in that predictor not accounted for by other variables already in the model.  Table 35

shows the tolerances from two aggregate OLS models run in the U.S. data (one classroom per

school): a full model that contains the nine variables from which we selected those for the final

model, and our final model that included six variables.  In the full model, four of nine variables

have tolerances below .30, and the two parental education variables have tolerances of roughly
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.2.  This may explain the lack of predictive value of parental education in our models; at the

aggregate level, most of the variance in these variables is shared with other predictors.  With

parental education removed, no tolerances remained below .36.  These low tolerances may also

help explain why modifications to the final model had relatively small effects on the total fit of

the model.

Table 35.—Tolerances in Aggregate Models, U.S. Grade 8 Mathematics: 1995

Full Model Final Model
M Computer present .26 .38
M Father present .71 .76
M Number books .26 .36
M Age .69 .73
M Age2 .71 .74
M Press .82
M Born in Country .77 .86
M Mother’s education .21
M Father’s education .22

Source:  Third International Mathematics and Science Study, Population 2 data set, International
Association for the Evaluation of Educational Achievement (IEA)

The analyst can also test the sensitivity of the final model fit to alternative selections of

variables.  If the fit of the model is not sensitive to changes in the choice of variables, it may be

wise to limit interpretation of specific parameters.  Thus, in this report, we responded to this

problem by deemphasizing specific parameter estimates and focusing instead on the apparently

more robust fit of the models.

The work presented here also suggests the need for caution in using weights in complex

analyses of survey data.  Although the logic of sampling weights is straightforward, i.e., to offset

intentional or unintended differences in the probability of inclusion in the sample, their use in

statistical analysis can be difficult, particularly in the case of complex models.  Some statistical

packages assume that weights are precision weights rather than sample weights; that is, they

assume that weights are inversely proportional to the variance of an observation rather than to its

probability of selection.  For some purposes, sample weights and precision weights are handled

very differently, and applying a precision-weighting algorithm to sample weights can result in

incorrect results, such as dramatically inflated variances.  Moreover, as shown in Appendix D,



90

there are complex decisions entailed in applying even sample-weighting algorithms to multilevel

analysis.

At the very least, analysts applying multi-level models to complex survey data should

follow the simple expedient of standardizing the weights so that the sum of the weights is equal

to the sum of observations.  As shown in Appendix D, this lessened substantially the distortions

that otherwise arose in using certain weighting algorithms in our multi-level models of TIMSS.

Moreover, some survey data have mean weights much further from 1 than does TIMSS, and in

those cases, the importance of standardizing weights could be even greater.  Analysts should be

cautioned, however, that even standardizing weights will not always eliminate all substantial

distortions, and better approaches to weighting are neither fully developed nor well implemented

in many software packages.  For simple two-level models, the SAS macro provided in Appendix

D officers an alternative approach for the case in which weights are uniform within any given

level-2 unit.

One specific finding that warrants note is the relatively weak predictive power of parental

education in the U.S. TIMSS sample.  This was surprising and was inconsistent with NELS.  It

may be that this is an anomaly from which little can be learned.  Nonetheless, this anomaly

underscores the general risk of basing conclusions on a single data source.  Findings may be

sensitive to both intended and unintended idiosyncracies of any particular database.  For

example, Wolfe (1997) has shown that TIMSS country means in eighth grade mathematics are

sensitive to the weighting of particular content areas within mathematics.  He illustrated this with

the case of Sweden, which scored poorly on algebra compared to the other TIMSS content areas.

In many areas of research, the accumulation of other research findings helps researchers

recognize potentially anomalous findings, but in the area of international comparisons, the small

number of data sources and published findings makes it difficult to check the robustness of

findings across sources.

Implications for the Design and Implementation of Future Surveys

The research presented here encountered numerous difficulties stemming from the design

and operationalization of TIMSS.  These impediments were of two types.  Some were aspects of

the TIMSS design that were appropriate for the intended primary purposes of TIMSS but were

poorly suited to the analyses we conducted.  Others were problems of data quality independent of
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TIMSS’ primary purpose.  Both may hold useful lessons for the design of future international

surveys of achievement.

Tradeoffs in Survey Design

Designing a complex survey entails many difficult tradeoffs, and many of the important

decisions about design depend on the priority assigned to the survey’s potential uses.  For

example, a simple random sample of students within high schools may be less useful than

sampling of intact classrooms for obtaining information about instruction but provides an

estimate of the variability of performance (and of background variables) within schools.  A

sample of a single intact classroom per school sacrifices that information about variability but

arguably provides a better basis for obtaining information about instruction and may be less

burdensome to participating schools.  A complex design with multiple stages, clustering, and

substantially unequal sampling probabilities lessens the cost and burden entailed in obtaining

certain specific statistics, but as we have shown here, it complicates some forms of secondary

analysis.    Matrix sampling of test items increases efficiency and therefore permits a richer

assessment of groups of students, but it can substantially complicate certain types of analysis and

often precludes accurate individual-level scores.  Many other similar tradeoffs could be listed.

Our expectation is that TIMSS was designed to meet several goals:

• To provide estimates of means and other summary statistics for countries and for

large aggregates within them (e.g., males and females) with reasonable statistical

efficiency;

• To provide a broad assessment of mathematics and science within limited testing

time;

• To provide rich information about curriculum and instruction; and

• To limit administrative and other burdens within schools, survey costs, and total

respondent burden.

The TIMSS design, with matrix sampling, sampling of intact classrooms, the use of a complex

sampling design with unequal probabilities of selection, and the emphasis on data pertaining to

curriculum and instruction, fits well with these goals.

This design, however, is less well suited to many other uses that are likely to arise in

secondary analysis.  Our analyses, which used TIMSS data in a manner quite different from its
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intended primary purposes, illustrate some of the impediments to secondary analysis imposed by

the TIMSS design.  Some of the difficulties we encountered may be specific to the analytical

questions we addressed, but others are likely to arise in a wide variety of secondary analyses.

In our case, the limitation of the sample to a single mathematics classroom per school in

most countries imposed particularly large costs because it precluded separating certain important

components of performance variance. In mathematics, it precluded separating variations among

classrooms within schools from variations among schools.  This design precludes answering

important questions about variations in performance – for example, how variable schools are in

the countries that participated in TIMSS, and how much of the variation among classrooms can

be attributed to within-school differentiation rather than stratification among schools.  Analysis

of data from the Second International Mathematics Study (Schmidt, Wolfe, and Kifer, 1993)

illustrated the importance of this shortcoming in that it showed that the partitioning of aggregate

score variance into between-classroom and between-school components varied dramatically

among countries.

This aspect of the sampling design imposes even more severe costs on analysis of the

science data.  The sample of students tested in science in a given school do not represent an

intact science class and also cannot be considered a random sample of science students within

the school.  In some schools, the sampled students may happen to be members of the same

science class, while in other schools, they are drawn in varying numbers from numerous science

classes.  For this reason, one cannot discern what mix of variance components constitutes the

level-two variance in science.  One could analyze the predictors of performance variation in

science only by ignoring the inherently hierarchical structure of the data (i.e., by analyzing the

data only at the student level).  Our two-level results in mathematics, however, suggest that

international comparisons based on single-level models are likely to be misleading.

A second aspect of the TIMSS design that complicates secondary analysis is the multi-

stage clustered sample design with non-uniform sampling weights.  Sample designs of this sort

are common, and their advantages are well known.  A design without these attributes would be

costlier and more burdensome, and for some purposes (e.g., analysis of curriculum), it might

yield inferior data.  The costs imposed on analysis by complex sampling weights, however, can

be high.  The application of sampling weights in simple statistical analyses is well understood,

and methods for correctly estimating standard errors from clustered samples are increasingly
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available and acknowledged.  In the case of more complex or more novel analytical methods,

however, such as hierarchical modeling, the use of weights is difficult and not well understood,

and software is not well developed in this respect.

Our analyses were also handicapped by limitations of the background variables included

in TIMSS.  These variables are sufficient to predict much of the variation in student performance

between classrooms, although little of the variance within classrooms.  However, this is a weak

test of their adequacy.  Even when specific background variables are demonstrably weak,

including enough of them in a multivariate model will sometimes predict almost as large a share

of the variance as would better variables (see, e.g., Berends and Koretz, 1996).  Moreover, we

showed that within limits, the specific choice of variables in our models did not greatly affect the

percentage of between-classroom variance predicted.  Prediction of variance need not imply

meaningful explanation.

In other respects, the TIMSS background variables are insufficient for exploring the

correlates of performance variation.  As noted, TIMSS does not include some of the background

variables that are considered to be substantially associated with student performance in some

countries.  Moreover, the absence of a parent survey presumably limits the quality of some of the

background data collected (see Baratz-Snowden, et al., 1988; Kaufman and Rasinski, 1991),

particularly for Populations 1 and 2.  At this point, we do not know the extent to which

deficiencies in the TIMSS background variable set contributed to the very poor prediction of

within-classroom performance variance.  It seems likely that the weak within-classroom

prediction is at least partly structural, not a function of weak operationalization, and the financial

and other costs of obtaining information from parents in an international study could be

prohibitive.  Nonetheless, in the absence of additional data and research, it is not clear how much

analyses of background variables will yield biased findings because of sole reliance on student

self-reports.

This report thus illustrates the basic and unavoidable tradeoffs that arise in designing

large-scale surveys: designs that suit one purpose well often suit another poorly.  Some of the

difficulties we encountered stemmed from the differences between our goals and the primary

purposes for which TIMSS was designed.  Nonetheless, the Department of Education has

actively encouraged secondary analysis of the large-scale survey databases it has funded.  The

questions we addressed were not arcane, and the difficulties we encountered would arise in a
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wide variety of secondary analysis.  Therefore, if the Department of Education anticipates or

wishes to encourage diverse uses of the data from these surveys, it may be productive to weigh

the design tradeoffs for various of these uses before finalizing the design of surveys.  For

example, if explorations of performance variation are likely to be important, a two-classroom-per

school design, or a hybrid design in which a single intact class and a random sample from the

entire grade are both sampled, might be worth the expense.  At the minimum, sampling an intact

classroom in each tested subject would likely add greatly to the utility of the data.  It is important

to note, however, that the costs imposed by any decision are likely to be statistical as well as

financial.  For example, the statistical efficiency of some estimates may be reduced by design

changes intended to facilitate other estimates.

Other Limitations of TIMSS

Several of the obstacles we confronted stemmed from problems of operationalization

rather than from the fundamental design of the TIMSS survey, and these could be addressed

without weakening – indeed, perhaps strengthening – TIMSS for its primary functions.  A

number of the steps that could be considered might apply to other complex surveys as well.  For

example, given the problems with school-level non-response, efforts to obtain rudimentary

information about non-participants could help estimate the impact of this problem and perhaps

correct for it in analysis.  A longer timeline might allow additional and more successful

recruitment of replacements.  The problem of “I don’t know” responses, which was extreme in

the case of parental education in France but was substantial in other instances as well, might

have been lessened by additional pretesting, perhaps followed by in-depth exploration of the

reasons for this response in a small number of cases.

The international nature of TIMSS raised additional problems that suggest the need for

additional caution and more extensive pretesting of survey questions.  We found numerous

instances, some of which are shown above, in which variables behaved substantially differently

in different countries.  For example, in some countries, the limited distribution of cases across

the categories of Likert items lessened the usefulness of the data.  In addition, some variables

showed response patterns suggesting response bias in some countries but not others.  The

relationships among variables also differed across countries, sometimes in ways that called the

meaningfulness of responses into question.  It might be feasible to lessen these problems.
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APPENDIX A.  DESCRIPTION OF VARIABLES

This Appendix describes the source of the principal variables used the models presented

in this report.

Name TIMSS name Notes
Math score BIMATSCR
Father present BSBGADU2
Age BSDAGE
Books in home BSBGBOOK Sometimes entered as a single variable, if test of

linearity warranted.
Computer in home BSBGPS02
Press composite Mean of BSBMSIP2 and BSBMMIP2 when both

were present; either variable if only one present
Mother’s education BSBGEDUM Sometimes recoded as noted in text; sometimes

entered as a single variable, if warranted by test of
linearity

Father’s education BSBGEDUF Sometimes recoded as noted in text; sometimes
entered as a single variable, if warranted by test of
linearity

Born in country BSBGBRN1
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APPENDIX B.  SELECTING A MODEL IN THE U.S.

As explained in the Methods section of the text, we used a “judgmental stepwise”

procedure to select the final two-level models in each country.  This process involved stepping

up from a null model to an inclusive one and then stepping down by eliminating unimportant

variables.  Although statistical significance was the primary consideration in this process, this

process differs from empirical subsets procedures (such as conventional stepwise procedures,

backward selection, and forward selection) in that the decisions were judgmental rather than

algorithmic.

To illustrate this process, this Appendix includes the series of models used for this

purpose in the U.S.  These models were run after most of the other key decisions had been

made—e.g., decisions to eliminate ill-behaved background variables and to restrict the analysis

to a fixed-coefficients model with group-means centering.  However, they differ from those

shown in the body of the report in several respects.  The samples in each of the models in this

Appendix comprised all cases with all variables present; thus the counts differ and are smaller in

the more inclusive models.  (A comparable set was run with all samples restricted to that of the

most inclusive model as a check against major effects of these sample differences.  Except in the

case of France, described in Appendix C, the differences between these sets of runs were

generally minor.)  These models were also run with SAS Proc Mixed without weighting.

The final model in this series (model 8) was refined for reporting.

The reasons for excluding mother’s education (BSBGEDUM) and father’s education

(BSBGEDUF) can be seen in the weak effects of these variables in model 2 and thereafter.  Note

that in model 4 we replaced the single ordinal mother’s and father’s education variables with sets

of dummy variables to explore whether the surprising unimportance of these constructs in the

model was a function of including them as single variables.
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                                 TIMSS Pop2, 1CPS, Upper Grade
                              HLM Results from Proc Mixed, UNWEIGHTED
                         TIMSS.990105.003        source: D_proc_hlm_sas.txt

------------------------ *Country Abbreviation*=USA DEPVAR=BIMATSCR MODEL=1 -------------

              _EFFECT_            _EST_            _SE_    _DF_       _T_        _PT_

              INTERCEPT    491.06431195      4.58838171     180    107.02      0.0001
              Tau          3552.7600207    402.47068810       .      8.83      0.0001
              Sigma^2      4692.2528156    112.75854991       .     41.61      0.0001

------------------------ *Country Abbreviation*=USA DEPVAR=BIMATSCR MODEL=2 -------------

              _EFFECT_            _EST_            _SE_    _DF_       _T_        _PT_

              INTERCEPT    494.52153739      4.59270045     180    107.68      0.0001
              BSBGADU2       3.80578452      2.89069033    2786      1.32      0.1881
              BSBGPS02       4.98121848      2.87288831    2786      1.73      0.0831
              BSBGBOOK       7.87457756      1.18097866    2786      6.67      0.0001
              BSBMSIP2       3.68904364      2.58894274    2786      1.42      0.1543
              BSBMMIP2       5.50508061      2.69114638    2786      2.05      0.0409
              BSDAGE       -12.48738151      2.79570110    2786     -4.47      0.0001
              BSDAGESQ      -6.86384608      3.94653887    2786     -1.74      0.0821
              BSBGBRN1       0.68016961      4.99629003    2786      0.14      0.8917
              BSBGEDUF       1.65866596      1.08692359    2786      1.53      0.1271
              BSBGEDUM      -0.70654341      1.07179498    2786     -0.66      0.5098
              Tau          3368.8508637    388.89107562       .      8.66      0.0001
              Sigma^2      4440.1011211    118.80121066       .     37.37      0.0001

------------------------ *Country Abbreviation*=USA DEPVAR=BIMATSCR MODEL=3 -----------

              _EFFECT_            _EST_            _SE_    _DF_       _T_        _PT_

              INTERCEPT    -536.5463051    204.82510461     170     -2.62      0.0096
              BSBGADU2       3.92628579      2.88528104    2786      1.36      0.1737
              BSBGPS02       5.16078404      2.86904641    2786      1.80      0.0722
              BSBGBOOK       7.78697862      1.17939065    2786      6.60      0.0001
              BSBMSIP2       3.65145387      2.58494438    2786      1.41      0.1579
              BSBMMIP2       5.71261830      2.68696307    2786      2.13      0.0336
              BSDAGE       -13.43344077      2.79474028    2786     -4.81      0.0001
              BSDAGESQ      -3.61518446      3.96686342    2786     -0.91      0.3622
              BSBGBRN1       0.64220260      4.98609971    2786      0.13      0.8975
              BSBGEDUF       1.73329963      1.08608042    2786      1.60      0.1106
              BSBGEDUM      -0.81083289      1.07060771    2786     -0.76      0.4489
              SRBSADU2     105.40839539     17.60837444     170      5.99      0.0001
              SRBSPS02      23.67913408     21.54298365     170      1.10      0.2733
              SBSBGBOO      38.54991692      7.21997134     170      5.34      0.0001
              SSBMSIP2       9.94767218     18.20517696     170      0.55      0.5855
              SSBMMIP2      54.94886834     22.09050064     170      2.49      0.0138
              SBSDAGE       38.51924047     12.90452094     170      2.98      0.0033
              SBDAGESQ     -107.1474027     21.84702186     170     -4.90      0.0001
              SBSBGBRN      14.00960769     27.06697048     170      0.52      0.6054
              SBSBGEDF       5.41114993      6.83280947     170      0.79      0.4295
              SBSBGEDM       4.47839816      7.62216283     170      0.59      0.5576
              Tau          682.43569696    102.92002095       .      6.63      0.0001
              Sigma^2      4439.1342712    118.72175984       .     37.39      0.0001
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------------------------ *Country Abbreviation*=USA DEPVAR=BIMATSCR MODEL=4 -------------

              _EFFECT_            _EST_            _SE_    _DF_       _T_        _PT_

              INTERCEPT    -504.6369199    205.98986535     172     -2.45      0.0153
              BSBGADU2       3.91021938      2.88684671    2779      1.35      0.1757
              BSBGPS02       4.95144103      2.86206319    2779      1.73      0.0837
              BSBGBOOK       7.79133311      1.17581686    2779      6.63      0.0001
              BSBMSIP2       3.89679334      2.58163398    2779      1.51      0.1313
              BSBMMIP2       5.62793498      2.68614721    2779      2.10      0.0362
              BSDAGE       -13.53783888      2.78942751    2779     -4.85      0.0001
              BSDAGESQ      -3.83130089      3.96338219    2779     -0.97      0.3338
              BSBGBRN1       0.69147684      5.00077202    2779      0.14      0.8900
              BSBGEDF2     -10.59517734      4.99866397    2779     -2.12      0.0341
              BSBGEDF3      -3.43554587      3.99554497    2779     -0.86      0.3899
              BSBGEDF4      -2.68330980      4.56735464    2779     -0.59      0.5569
              BSBGEDF5       1.54300170      3.86498312    2779      0.40      0.6898
              BSBGEDM2      -5.80362787      8.17302428    2779     -0.71      0.4777
              BSBGEDM3      -2.60757750      7.92925631    2779     -0.33      0.7423
              BSBGEDM4      -6.20144168      8.64922968    2779     -0.72      0.4734
              BSBGEDM5      -1.30676023      7.96419248    2779     -0.16      0.8697
              BSBGEDM6      -7.33978108      7.97267209    2779     -0.92      0.3573
              SRBSADU2     100.24736314     17.33250131     172      5.78      0.0001
              SRBSPS02      38.85948832     18.18098344     172      2.14      0.0340
              SBSBGBOO      42.74728043      6.66593146     172      6.41      0.0001
              SSBMSIP2      11.73400488     18.28230999     172      0.64      0.5218
              SSBMMIP2      55.25966840     22.27203860     172      2.48      0.0141
              SBSDAGE       37.99607299     13.00196387     172      2.92      0.0039
              SBDAGESQ     -108.4775058     21.90179863     172     -4.95      0.0001
              SBSBGBRN       9.34730900     27.13090723     172      0.34      0.7309
              Tau          699.05292803    104.73283112       .      6.67      0.0001
              Sigma^2      4423.7579010    118.32140351       .     37.39      0.0001

------------------------ *Country Abbreviation*=USA DEPVAR=BIMATSCR MODEL=5 ------------

              _EFFECT_            _EST_            _SE_    _DF_       _T_        _PT_

              INTERCEPT    -523.1109567    203.76721514     171     -2.57      0.0111
              BSBGADU2       3.74799544      2.86716247    2838      1.31      0.1912
              BSBGPS02       4.81841978      2.85252181    2838      1.69      0.0913
              BSBGBOOK       7.96437257      1.17198688    2838      6.80      0.0001
              BOTHSIP        9.55664007      2.76243295    2838      3.46      0.0005
              BSDAGE       -13.85406433      2.77435181    2838     -4.99      0.0001
              BSDAGESQ      -5.20513005      3.89974942    2838     -1.33      0.1821
              BSBGBRN1       0.78088495      4.91171889    2838      0.16      0.8737
              BSBGEDUM      -0.83667048      1.06199587    2838     -0.79      0.4309
              BSBGEDUF       1.74057001      1.07566869    2838      1.62      0.1057
              SRBSADU2     105.73509836     17.72691869     171      5.96      0.0001
              SRBSPS02      30.01342653     21.38104613     171      1.40      0.1622
              SBSBGBOO      37.43149260      7.23451840     171      5.17      0.0001
              SBOTHSIP      51.06286273     17.07811229     171      2.99      0.0032
              SBSDAGE       38.29976032     12.94040589     171      2.96      0.0035
              SBDAGESQ     -102.6060435     21.88833741     171     -4.69      0.0001
              SBSBGBRN      20.93219577     26.83706557     171      0.78      0.4365
              SBSBGEDM       4.72562273      7.66780923     171      0.62      0.5385
              SBSBGEDF       5.08009316      6.87202093     171      0.74      0.4608
              Tau          699.32293927    104.64622222       .      6.68      0.0001
              Sigma^2      4462.7871601    118.29817382       .     37.72      0.0001
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------------------------ *Country Abbreviation*=USA DEPVAR=BIMATSCR MODEL=6 -------------

              _EFFECT_            _EST_            _SE_    _DF_       _T_        _PT_

              INTERCEPT    -543.6083459    202.98594017     172     -2.68      0.0081
              BSBGADU2       3.50886305      2.86157386    2844      1.23      0.2202
              BSBGPS02       5.01527446      2.84872252    2844      1.76      0.0784
              BSBGBOOK       8.03972611      1.16808535    2844      6.88      0.0001
              BOTHSIP        9.65529739      2.75989961    2844      3.50      0.0005
              BSDAGE       -14.00887399      2.77016192    2844     -5.06      0.0001
              BSDAGESQ      -5.00682231      3.89508456    2844     -1.29      0.1987
              BSBGEDUM      -0.76261982      1.06160569    2844     -0.72      0.4726
              BSBGEDUF       1.69573990      1.07501873    2844      1.58      0.1148
              SRBSADU2     104.58088954     17.64747066     172      5.93      0.0001
              SRBSPS02      28.40472989     21.40340361     172      1.33      0.1862
              SBSBGBOO      39.52103341      6.82229515     172      5.79      0.0001
              SBOTHSIP      54.06504714     16.86747924     172      3.21      0.0016
              SBSDAGE       40.10399629     12.73520343     172      3.15      0.0019
              SBDAGESQ     -104.7440078     21.76129332     172     -4.81      0.0001
              SBSBGEDM       4.85188570      7.69312653     172      0.63      0.5291
              SBSBGEDF       4.37320652      6.84124810     172      0.64      0.5235
              Tau          707.51856617    105.50377300       .      6.71      0.0001
              Sigma^2      4465.5197810    118.26773352       .     37.76      0.0001

------------------------ *Country Abbreviation*=USA DEPVAR=BIMATSCR MODEL=7 ------------

              _EFFECT_            _EST_            _SE_    _DF_       _T_        _PT_

              INTERCEPT    -530.4133272    202.78149526     173     -2.62      0.0097
              BSBGADU2       3.72425848      2.82309908    2916      1.32      0.1872
              BSBGPS02       4.43813189      2.79863109    2916      1.59      0.1129
              BSBGBOOK       7.70277912      1.14397980    2916      6.73      0.0001
              BOTHSIP        9.59739085      2.72301595    2916      3.52      0.0004
              BSDAGE       -14.36439444      2.73743060    2916     -5.25      0.0001
              BSDAGESQ      -5.39575414      3.83572024    2916     -1.41      0.1596
              BSBGEDUF       1.59753524      0.94965050    2916      1.68      0.0926
              SRBSADU2     103.04442056     17.30423074     173      5.95      0.0001
              SRBSPS02      31.70841582     20.97773005     173      1.51      0.1325
              SBSBGBOO      41.09147362      6.43441476     173      6.39      0.0001
              SBOTHSIP      54.57300192     16.86773296     173      3.24      0.0015
              SBSDAGE       39.23310942     12.73250816     173      3.08      0.0024
              SBDAGESQ     -101.3513887     21.73045006     173     -4.66      0.0001
              SBSBGEDF       6.89926659      5.51788038     173      1.25      0.2129
              Tau          714.49425472    105.80798968       .      6.75      0.0001
              Sigma^2      4458.2833055    116.65296776       .     38.22      0.0001

------------------------ *Country Abbreviation*=USA DEPVAR=BIMATSCR MODEL=8 -------------

              _EFFECT_            _EST_            _SE_    _DF_       _T_        _PT_

              INTERCEPT    -438.4316276    199.08475500     174     -2.20      0.0290
              BSBGADU2       2.92557313      2.54131366    3458      1.15      0.2497
              BSBGPS02       4.21512920      2.55928358    3458      1.65      0.0996
              BSBGBOOK       7.22712763      1.02033353    3458      7.08      0.0001
              BOTHSIP       10.12991047      2.47030659    3458      4.10      0.0001
              BSDAGE       -12.07757975      2.51939914    3458     -4.79      0.0001
              BSDAGESQ      -7.37765706      3.40666381    3458     -2.17      0.0304
              SRBSADU2      99.04571960     16.88302168     174      5.87      0.0001
              SRBSPS02      44.11311839     17.26661550     174      2.55      0.0115
              SBSBGBOO      46.10028489      6.09051537     174      7.57      0.0001
              SBOTHSIP      54.46070202     16.58109607     174      3.28      0.0012
              SBSDAGE       32.86299898     12.52547716     174      2.62      0.0095
              SBDAGESQ     -84.92542356     21.27544129     174     -3.99      0.0001
              Tau          734.93292084    104.20060147       .      7.05      0.0001
              Sigma^2      4514.0191784    108.53899811       .     41.59      0.0001
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APPENDIX C.  SELECTING A MODEL IN FRANCE

The process of selecting models in France followed the same ‘judgmental stepwise’

procedure illustrated above for the U.S. but with an additional complication caused by the large

number of students in the French sample who replied “I don’t know” to questions about parental

education.

To address this issue, a set of unweighted hierarchical models were run to isolate the

effects of the sample restriction caused by this missing data problem and the inclusion or

exclusion of parental education.  Two samples were used.  In mathematics, Sample D included

all students with non-missing values on all variables in the models below, with the exception of

maternal education.  Sample C was the subset of Sample D that excluded all students with

missing values or responses of “I don’t know” to the question about maternal education.  Models

were then run with and without maternal education.  (R_DUM in the models below is the

recoded version of maternal education used in France; MR_DUM is the classroom mean of

R_DUM.)

The first of the three models below, labeled “model=1 group=C”, includes R_DUM and

is therefore restricted to Sample C.  The second model, labeled “model=2a group=C” excludes

R_DUM and MR_DUM but is nonetheless restricted to Sample C, the students who had

informative values for those two variables.  The third model, labeled “model=2b group=D”, is

the same model as model 2a and also excludes R_DUM and MR_DUM, but it takes advantage of

this to use the full Sample D.

Thus a comparison of models 2a and 2b shows how much the difference between

Samples C and D affect the results of a simplified model that excludes maternal education,

because a direct comparison of samples cannot be carried out with maternal education included.

The models are similar at the within-classroom level, but the estimated effect for proportion of

fathers present (MSBGADU2) is much larger in the larger Sample D.  More important given the

emphasis in this report on predicted variance are the residual errors in the two models.  The

residual variances are fairly similar between the two models, but the between-classroom residual

variance is about 13 percent smaller in Sample C (model=2a).  This suggests that if we had been

able to run our final model in the larger Sample D, we might have predicted slightly less of the

between-classroom variance.



C-2

Simpler analyses confirmed that Samples C and D were different in important ways.

Correlations between background variables and scores were calculated at the student and

classroom levels for Sample C and Sample C', defined as all students in Sample D who were not

in Sample C.  These correlations were quite similar across samples at the level of students, but

they differed appreciably at the level of school means.  For example, in Sample C, the proportion

of fathers present correlated .10 with mean math scores; in Sample C', the corresponding

correlation was .24.  In Sample C, the correlation between mean number of books and proportion

of fathers present was -.13; in Sample C', it was +.15.

The comparison of models 1a and 2a then shows the impact of including or excluding

maternal education ( R_DUM and R_DUM) in the smaller sample C that includes only students

with informative responses to that variable.  At both levels, the estimates for most of the

variables are quite similar in the two models.  The exception is the aggregate age variable, which

had a larger coefficient when maternal education was excluded.  However, the effect of mother’s

education was significant at both levels in model 1a.  As one would expect, the residual

variances are smaller at both levels when maternal education is included, but the difference is

appreciable only at the between-classroom level.

These analyses indicate that there is no straightforward solution to the problem of

missing and uninformative responses to the parental education questions in France.  Maternal

education was an important predictor in the subsample that had informative values, and that

subsample was clearly somewhat different than the complementary group that had missing or

uninformative values.  Thus, the simple choices are a better model in a nonrepresentative sample

or a weaker model in a representative sample.

Faced with this choice and with the relative paucity of strong background variables in

TIMSS, we opted for the more inclusive model, including maternal education, at the expense of

some nonrepresentativeness of the sample.  Other analysts might chose the other alternative.

Either choice limits the appropriate inferences from the results, but the analyses here suggest that

our basic conclusions about the prediction of variance would not have been fundamentally

altered by the choice.
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                                   TIMSS Pop2, 1CPS, Upper Grade
                            HLM Results FRA from Proc Mixed, UNWEIGHTED
             TIMSS.990625.002         source: compare_c_and_d_groups_in_france.sas.txt

-------------------- *Country Abbreviation*=FRA depvar=BIMATSCR model=1a group=C -----

                   Effect       Estimate      StdErr      DF     tValue     Probt

                   Intercept      695.55      136.66     117       5.09    <.0001
                   R_DUM          4.6135      1.6113    1489       2.86    0.0043
                   BSBGADU2       8.4723      4.4303    1489       1.91    0.0560
                   bothsip        8.6783      3.6190    1489       2.40    0.0166
                   BSDAGE       -17.1930      2.9034    1489      -5.92    <.0001
                   bsdagesq      -0.1554      2.7575    1489      -0.06    0.9551
                   MR_DUM        23.1767      5.4181     117       4.28    <.0001
                   MSBGADU2      46.6976     20.7134     117       2.25    0.0260
                   MOTHSIP       39.1505     14.9107     117       2.63    0.0098
                   MSDAGE       -27.2209      7.5916     117      -3.59    0.0005
                   msdagesq     -21.9343     11.4347     117      -1.92    0.0575
                   Tau            520.93      111.75       .       4.66    <.0001
                   Sigma^2       4093.21      149.85       .      27.32    <.0001

------------------- *Country Abbreviation*=FRA depvar=BIMATSCR model=2a group=C ------

                   Effect       Estimate      StdErr      DF     tValue     Probt

                   Intercept      981.87      126.96     118       7.73    <.0001
                   BSBGADU2       8.2578      4.4421    1490       1.86    0.0632
                   bothsip        9.4146      3.6200    1490       2.60    0.0094
                   BSDAGE       -18.0965      2.8943    1490      -6.25    <.0001
                   bsdagesq      -0.2275      2.7652    1490      -0.08    0.9344
                   MSBGADU2      45.6070     22.1136     118       2.06    0.0414
                   MOTHSIP       38.3958     15.8951     118       2.42    0.0172
                   MSDAGE       -42.5287      7.1359     118      -5.96    <.0001
                   msdagesq     -17.5852     12.1144     118      -1.45    0.1493
                   Tau            646.43      129.53       .       4.99    <.0001
                   Sigma^2       4116.31      150.79       .      27.30    <.0001

------------------- *Country Abbreviation*=FRA depvar=BIMATSCR model=2b group=D ------

                   Effect       Estimate      StdErr      DF     tValue     Probt

                   Intercept      893.36      144.21     118       6.19    <.0001
                   BSBGADU2       9.1873      3.3305    2616       2.76    0.0058
                   bothsip        7.2899      2.7026    2616       2.70    0.0070
                   BSDAGE       -19.4497      2.0437    2616      -9.52    <.0001
                   bsdagesq       0.8787      1.6730    2616       0.53    0.5995
                   MSBGADU2      78.2348     28.0223     118       2.79    0.0061
                   MOTHSIP       42.4893     19.6811     118       2.16    0.0329
                   MSDAGE       -39.0743      7.5211     118      -5.20    <.0001
                   msdagesq     -37.3806     13.8659     118      -2.70    0.0080
                   Tau            745.49      119.72       .       6.23    <.0001
                   Sigma^2       4037.84      111.58       .      36.19    <.0001
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APPENDIX D.  WEIGHTING MULTILEVEL MODELS

Within each country, the TIMSS sample design is complex, with unequal sampling

probabilities for different schools in the sample.  When the sampling probabilities are unequal,

parameter estimates can be biased unless the model controls for the sample design.  The most

common way of controlling for the sample design is to weight analyses to compensate for

unequal sampling probabilities.  One could also control for the sampling design by including

design features as covariates in the model.  Because the design features are not completely

known for all the countries included in our analyses, we used the more common approach of

weighting our analyses.

Weighting our TIMSS analyses correctly, however, turned out to be problematic.  Most

statistical software, including the software used for multi-level modeling, such as HLM and SAS

PROC MIXED, has the capability of weighting data.  Like most SAS procedures, SAS PROC

MIXED treats weights as a specific form of precision weights (i.e., the weights are related to the

variance of observations).  However, sampling weights reflect differences in inclusion

probabilities, not the variance of observations and for most analyses SAS PROC MIXED does

not produce the exactly the desired estimates. HLM also appears not to provide the desired

estimates.  Accordingly, we wrote SAS macros that do provide the weighted estimates we

consider most desirable.  The code for these macros is included in Figure D.1 at the end of this

appendix.

In the remainder of this appendix, we describe the pseudo-maximum likelihood estimator

(PMLE) as our preferred estimator for weighted multilevel modeling.  We then discuss our

exploration of weighting, focusing on PROC MIXED because our analyses were primarily

conducted using SAS.  Using a series of examples, we compare the results of weighted analyses

with PROC MIXED to the PMLE and other estimators with known properties.  In all our

examples, we assume weights vary among schools, but are constant within schools, as they are in

the TIMSS one-classroom-per-school sample.  This assumption would apply to the full TIMSS

samples in the U.S., Australia, and Cyprus only if the level 2 unit were classrooms rather than

schools.  We conclude that PROC MIXED is not appropriate for weighted multilevel modeling

when the weights are sampling weights.  Finally, we note the results of a more limited test of

HLM, which also failed to provide PMLE estimates consistently.
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The examples given here proceed from simple and restrictive cases in which weighting is

relatively unproblematic to more realistic illustrations in which the problems caused by

weighting can be severe.  The final two examples in our discussion of SAS are the two that are

most pertinent to the work presented in this report.

Sampling Weights and Complex Models

Pfeffermann et al. (1998) discuss the use of sampling weights when fitting multilevel

models to complex sample data with unequal sampling probabilities. Pfeffermann et al. show

that weighted multilevel analyses yield consistent estimators under mild regularity conditions.

They call their weighted estimates pseudo-maximum likelihood estimates (PMLE).14

Pfeffermann (1996) shows that in general the PMLE have desirable properties of minimum error

in a class of estimators.15  Thus, the PMLE is a reasonable estimator to consider for TIMSS.

We will describe the PMLE for the simple random intercepts model without covariates,

but the method can be easily expanded to include covariates.  For a sample of n classrooms

nested in n schools (because we have one classroom per school in our analyses), with mj

observations from the jth classroom, the log likelihood for the outcome y and parameters µ, the

mean, σ2, the level-one variance component, and τ2, the level-two variance component, is given

by:
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where ji ijj myy ∑=⋅ .  The estimates are found by solving the likelihood equations:

                                                
14 Pfefferman et al. (1998) actually define a probability weighted version of an iteratively reweighted
generalized least squares estimator (PWIGLS), which is asymptotically equivalent to maximum likelihood.  In this
appendix we actually consider the true PMLE but the estimates are essentially identical to the PWIGLS estimator for
our simple examples.  The analyses in the body of the report use the PWIGLS estimator.
15 The results of Pfefferman (1996) might not apply to multilevel models in general.  However, the TIMSS
sample does not subsample within the level-two units (classrooms) of our model.  Hence, the Pfefferman results
should apply to the TIMSS one-classroom-per-school sample and the simple examples in this appendix.
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To estimate the PMLE, we replace sums over the n level two units with weighted sums.  If mj =

m for all level two units, then the PMLE solve:

( ) 0=∑ −⋅
j

jj ymw µ (3a)

( ) ( )
0

1

24

2

=
∑−

−
∑ ∑ − ⋅

σσ
j

j
j i

jijj wmyyw
(3b)

( )
02

2

=
∑

−
∑ −⋅

θθ

µ
j

j
j

jj wymw

(3c)

where θ = mτ + σ2.  Let ∑∑=
j

j
ij

ijjw mwywy , the weighted mean, ( )∑ ∑ −= ⋅
j i

jijj yywSSW 2

and ( )∑ −= ⋅
j

wjj yymwSSB 2 , then the PMLEs for µ, σ2 and τ are wyˆ =µ ,

( )∑ −=
j

j mwSSWˆ 12σ  and mˆwSSBˆ
j

j 






 −∑= 2στ .  When the mj's are not constant, then the

solutions must be found iteratively.

If we were not conducting a weighted analysis, we would consider method-of-moments

or REML estimates (which are equal for balanced data) as an unbiased alternative to the MLE.

The MLE is biased toward zero but the bias converges to zero at a rate of 1/n.  By analogy we

can consider weighted method-of-moment estimates µµ ˆ~
c = , 22 σσ ˆ~

c =  and
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−∑= 21 στ .  These are the estimators suggested by Graubard and Korn

(1996), and they are consistent.  We will refer to these estimators as the consistent method-of-

moment estimators, CMMs.  However, under the assumption of the random intercepts model and

assuming that the sample design does not alter the distribution of values, i.e., the design is

ignorable (see Pfeffermann, 1996, for a discussion of ignorable designs), then an alternative

unbiased method-of-moments estimators exists. To distinguish between the two method-of-

moment estimators, we will refer to these estimators as the unbiased method-of-moments

estimators, UMMs, even though the estimators are unbiased only under possibly restrictive

assumptions.  These unbiased estimates are given by: µµ ˆ~
u = , 22 σσ ˆ~

u =  and
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SSB
m

~ στ .16  The UMM estimators are invariant to rescaling the

weights by a constant.  The CMMs are not.

PROC MIXED does not directly provide the PMLE or a method-of-moment estimator.

PROC MIXED provides at least four estimators depending on whether the model is specified

using the "random" or the "repeated" statement and whether MLE or REML estimates are used.

The assumptions of the random intercepts model are that Var(yj) = τJ + σ2I, where yj denotes the

vector of observations for the jth classroom, J is an mj by mj matrix of 1's and I is an mj by mj

identity matrix.  Without weights, this model can be specified in SAS using PROC MIXED with

either the random statement "random intercept /subject=id;" or the repeated statement "repeated /

type=cs subject=id;" where the variable id identifies classrooms.  However, the models specified

by the random and the repeated statements differ when weights are used.  With the random

statement, PROC MIXED assumes that the Var(yi) = τ/wjJ + σ2I.  With the repeated statement,

PROC MIXED assumes that the Var(yi) = (τJ + σ2I)/wj.

When the data are balanced and the weights sum to sample size (nm), then the MLEs

from the model specified by the repeated statement equal the PMLE.  If the weights do not sum

                                                

16 The unbiasedness of the UMMs is probably of limited value.  The UMMs are unbiased only under the
assumption that the sample design is ignorable.  If the design is ignorable, then weighting is unnecessary and
inefficient.  However, the estimates do present a principled method for deriving method-of-moment estimators that
are invariant to rescaling the weights.
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to the sample size, then the MLEs of the variance components produced by PROC MIXED with

the repeated statement equal 2σ̂q  and τ̂q , where nmmwq
j

j∑= .  If the data are unbalanced

PROC MIXED with the repeated statement does not estimate the PMLE.  With weighted data,

the REML estimates for PROC MIXED with the repeated statement are ( )12 −= mnSSW~
rσ  and

( )( ) m~nSSB~
rr
21 στ −−= .  When the weights are standardized to equal the sample size, then the

REML estimates for PROC MIXED with the repeated statement equal the CMMs.

The estimates produced by PROC MIXED with the random statement are not available in

closed form for even this simple model.  However, as shown below, the estimates from PROC

MIXED with the random statement do not generally equal any of the other estimates.

Simple Test Cases

We used a simple test case to explore weighted analyses with SAS PROC MIXED.  We

selected a sample of 101 schools from the grade 8 U.S. TIMSS sample.  All 101 schools had 20

or more students in the TIMSS sample.  From each classroom, we selected 20 students at random

to be in our special balanced subsample.  We adjusted the standard TIMSS weight (multiplied by

two and added one) and rounded it to the nearest whole number.  Table D.1 gives the distribution

of weights.  The weights vary across schools but are constant for students from the same school.

The sum of the weights is 265.

Table D.1.—Distribution of Weights for Balanced Sample Schools
Weight Frequency Percent

1 6 5.9
2 49 48.5
3 30 29.7
4 13 12.9
5 1 1.0
6 1 1.0
8 1 1.0

We used the students’ math scores (BIMATSCR) as the outcome variable and fit the

simplest mixed model—a one-way random effects ANOVA or a random intercepts models with

the grand mean as the only fixed effect.  This model has three parameters: the mean, µ, the level-
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one variance component, σ2, and the level-two variance component, τ.17  We used seven

weighted estimators:  a) the unbiased method-of-moments (UMM); b) the consistent method-of-

moments (CMM); c) the pseudo-maximum likelihood estimator (PSME); d) SAS PROC MIXED

with a random statement and MLE; e) SAS PROC MIXED with a random statement and REML;

f) SAS PROC MIXED with a repeated statement and MLE; and g) SAS PROC MIXED with a

repeated statement and REML. For these PROC MIXED estimates we standardized the weights

to sum to 101.  (If the weights are not standardized then the variance component estimates will

be scaled by the sum of the weights.)  We also expanded the data set by repeating all the

observations from each school w times, where w is the weight for the school.  We reran the

analyses using this expanded data set.

Table D.2 gives the results of our comparison study.  The first seven rows contain the

results of weighted analyses performed on the sample of 20 students from 101 schools. The last

five rows contain the results of analyses on the expanded data where schools were replicated w

times.  The expanded data set contains 5300 observations (20 students from 265 “schools”),

although many of the observations are duplicates as a result of replication.

                                                
17 No single notation for level-one and level-two variance components is consistently used by writers in this
field.  We use σ2 for the level-one variance and τ for the level-two variance to be consistent with Bryk and
Raudenbush (1992), the text that we expect is most familiar to our readers.
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Table D.2.—Comparison of Estimators on Sample with 20 Observations from Every School.
Estimation Method µ σ2 τ
Weighted Data
Unbiased Method-of-Moments* 25.1311 12.3575 7.2406
Consistent Method-of-Moments** 25.1311 12.3575 7.1799
PMLE* 25.1311 12.3575 7.1505
PROC MIXED, RANDOM, MLE*** 24.8605 12.3559 7.1316
PROC MIXED, RANDOM,
REML***

24.8603 12.3560 7.2098

PROC MIXED, REPEATED,
MLE***

25.1311 12.3575 7.1505

PROC MIXED, REPEATED,
REML***

25.1311 12.3575 7.2282

Expanded Data
Method-of-Moments 25.1311 12.3575 7.1799
PROC MIXED, RANDOM, MLE 25.1311 12.3575 7.1505
PROC MIXED, RANDOM, REML 25.1311 12.3575 7.1799
PROC MIXED, REPEATED, MLE 25.1311 12.3575 7.1505
PROC MIXED, REPEATED, REML 25.1311 12.3575 7.1799
*Invariant to sum of the weights
**Sum of the weights equals 5300, not the sample size of 2020.
***Sum of the weights equals 2020.

Among the various methods, the estimates of µ and σ2 are similar but not identical.  In

particular, PROC MIXED with the random statement does not use the weighted mean to estimate

µ.  This is true for both the MLE and REML methods.  Also, both the MLE and the REML

estimates of σ2 from PROC MIXED with the random statement differ slightly from all the other

estimates.

The estimates of τ vary more among the methods than the estimates of the other

parameters.  As shown in the table and discussed above, for the special case of balanced data

with a simple random intercepts model, PROC MIXED with the repeated statement provides the

PMLE for all three parameters including τ, provided the weights are standardized to equal the

sample size.  Also the PMLE equals the MLE from the expanded data.  As expected, the PMLE

estimate of τ is smaller than the CMM estimator.  The CMM estimate equals the method-of-

moment estimator and the REML estimators from the expanded data.  Neither the repeated nor

the random statement produces a weighted REML estimator that equals the CMM or the REML

estimator from the expanded data.
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For the expanded data, the random and the repeated statements in PROC MIXED fit the

same model and produce the same results.  Because the data are balanced, the REML estimates

equal the method-of-moments estimates for the expanded data.

The weighted UMM estimate of τ is larger than any of the other estimates are.  We

expect this estimate to be greater than the CMM estimate.  Heuristically, the consistent estimator

assumes that the population would look like the expanded data—data from unobserved schools

would be a direct replicate of the data from schools in the sample.  The unbiased estimator

adjusts for the fact that data from the unobserved schools would be similar but not identical to

the data from the observed schools.  A small simulation study demonstrated that when the

sampling design does not affect the distribution of the data, then the unbiased estimator is indeed

unbiased and the consistent estimator is slightly biased for a sample of 101 schools with 20

students per school.

We then created an unbalanced data set by deleting 8 observations from half of the

sampled schools (51 schools).  We then fit our model using this data.  We derived the PMLE and

the PROC MIXED repeated estimates using this unbalanced and weighted data.  We also

expanded this data set by repeating schools.  We derived the REML and MLE estimates using

the expanded data.

Table D.3 presents the results of these comparisons.  The PMLE again is essentially equal

to the MLE estimates from the expanded data.  The small differences in the estimate of τ

probably reflect difference in the algorithms for calculating the estimates.  For unbalanced data

we used the WIGLS algorithm of Pfeffermann et al. (1998) to estimate the PMLE.  WIGLS is a

weighted version of the iteratively reweighted generalized least squares estimator.  Even without

weights, the IGLS estimator differs slightly from the MLE, although they are asymptotically

equivalent.
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Table D.3.—Comparison of Estimators on Sample with 12 or 20 Observations Per School.
Estimation Method µ σ2 τ2

Weighted Data
PMLE* 25.0647 12.3469 7.1390
PROC MIXED, REPEATED,
MLE**

25.0646 12.3411 7.1958

PROC MIXED, REPEATED,
REML**

25.0645 12.3411 7.2755

Expanded Data
PROC MIXED, REPEATED, MLE 25.0647 12.3471 7.1378
PROC MIXED, REPEATED, REML 25.0646 12.3471 7.1677
*Invariant to sum of the weights.
**Sum of the weights equals 1612.

Weighted estimates from PROC MIXED in Table D.3 do not equal the PMLE or the

estimates from the expanded data.  The MLEs from PROC MIXED with a repeated statement

minimize the likelihood given by:
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where yj denotes the vector of observations from the jth classroom and µj = Xjβ  where β  are the

regression coefficients and Xj is the matrix of predictors for the jth classroom and Vj = τJ + σ2I.

The PMLEs, on the other hand, maximize the likelihood given by:
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The two likelihoods are not the same, and this results in the difference in the estimated variance

components.
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TIMSS Example

Our main analysis data set for our grade 8 U.S. math, contained 3647 observations from

181 classrooms in 181 schools, one classroom per school.  As described in the body of the report

and in Appendix B, we used this data set to fit a model to predict math scores as a function of the

student's age and age squared, the number of books in the student's home, whether or not a

computer is present in the home, whether or not the father lives in the household and our press

variable.  The model includes the group mean (between-class) and the group mean centered

(within-classroom) values for each predictor.  For this comparison, we ran weighted analyses

using the TIMSS sampling weight standardized to sum to 3647, the sample size.   We calculated

the PMLE and the PROC MIXED random and repeated statement MLEs.

The results are given in Table D.4.  The results for the PMLE are the same as those given

in Table 12 of the report.  The three estimation procedures provide very similar estimates of the

coefficients for the within-class predictors.  The PMLE and the PROC MIXED repeated MLE

estimates of the coefficients for the between-class predictors are again very similar.  However,

the PROC MIXED random MLE estimates of coefficients for the between-class predictors

diverge from the other estimates.  Differences between PROC MIXED with the random

statement and the other methods are not surprising.  The model fit by random statement assumes

a different covariance structure than the model used by the PMLE or the repeated statement.  In

particular, the random statement model assumes a different value for the ratio of the within

classroom residual variance to the between classroom residual variance than do the other models.

This ratio controls the weighting of large classrooms relative to smaller classroom.  The

weighting of classrooms will have the greatest effect on the between classroom predictors.
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Table D.4.—Comparison of Estimates for U.S. Grade 8 Example
PROC MIXED

PMLE Repeated, MLE Random, MLE
Intercept -351.67 -350.60 -431.90
Within Class Predictors
(Group Mean Centered)
Number of books 7.93 7.93 7.93
Computer present 4.35 4.35 4.35
Father present 1.73 1.73 1.73
Press 9.55 9.55 9.55
Age -14.43 -14.43 -14.43
Age2 -6.86 -6.86 -6.86
Between Classroom
Predictors (Group Means)
Number of books 45.48 45.43 46.54
Computer present 37.23 37.22 42.26
Father present 90.29 90.33 96.85
Press 43.20 43.14 58.58
Age 33.90 33.86 34.21
Age2 -149.38 -149.78 -106.05

Variance Components
τ (between) 766.16 823.65 747.84
σ2 (within) 4570.39 4557.02 4541.79

The estimates of the variance components in Table D.4 also differ across the three

methods.  These differences are consistent with our findings from the simple test cases described

above.  PROC MIXED estimates do not maximize the weighted likelihood that the PMLEs

maximize.  The differences are not large in this example, although the largest estimate of τ (from

PROC MIXED with the repeated statement) is about 10% larger than the smallest estimate (from

PROC MIXED with the random statement).

Our discussion has so far focused only on the estimated parameters.  As shown in Table

D.4, the estimates produced by PROC MIXED with the repeated statement and standardized

weights are very similar to the PMLEs.  However, the standard errors produced by PROC

MIXED will tend to be too small.  PROC MIXED is not treating the weights as design weights

and therefore does not properly adjust the standard error estimates to account for the affect of

weighting.  PROC MIXED assumes that the variance-covariance matrix for the estimated

coefficients is ( ) ( ) 121121 −−′= XWVWXV // ˆβ̂ when the true variance (assuming the model is
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correct and the design is ignorable) is given by

( ) ( ) ( ) 1211212112121121121121 −−−−−− ′′′= XWVWXXWVVWWVWXXWVWXV //////// ˆˆˆˆβ̂ .

Table D.5 provides the standard error estimates that correspond to the coefficients in

Table D.4.   The PROC MIXED standard errors are the default estimates.  The PMLE standard

errors were estimated using a jackknife procedure and equal those from Table 12 of the main

report.  Because of the use of the jackknife, our standard errors adjust for the use of sampling

weights.  As shown in the table the standard errors from PROC MIXED tend to be smaller than

the jackknife-standard errors for the PMLEs.  We expect that jackknife standard error for PROC

MIXED would be similar to those for the PMLE, and therefore the table demonstrates the likely

bias in PROC MIXED standard errors.

Table D.5.—Comparison of Standard Error Estimates for U.S. Grade 8 Example
PROC MIXED

PMLE Repeated, MLE Random, MLE
Intercept 265.9 207.51 205.55
Within Class Predictors
(Group Mean Centered)
Number of books 1.2 1.03 1.03
Computer present 3.5 2.61 2.60
Father present 3.3 2.59 2.58
Press 2.6 2.50 2.49
Age 3.3 2.56 2.55
Age2 3.7 3.44 3.44
Between Classroom
Predictors (Group Means)
Number of books 7.4 6.23 6.27
Computer present 16.8 16.71 17.45
Father present 21.4 18.71 17.64
Press 17.1 16.63 16.89
Age 15.3 13.04 12.95
Age2 37.1 24.49 22.62

Table D.6 shows the results of the fitting the same model with unstandardized weights

(i.e., the sum of the weights equals 5414.74, not 3647).  The estimates of the regression

coefficients are invariant to the sum of the weights for all three methods.  However, as discussed
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above, the PROC MIXED estimates of τ and σ2 are scaled with the ratio of the sum of the

weights to the sample size.  Hence, the repeated estimates of τ and σ2 are 1.48 (=5414.76/3647)

times larger then the estimate given in Table D.4.  Also, the random estimate of σ2 is 1.48 times

larger than the value given in Table D.4.  The sensitivity of PROC MIXED to the sum of the

weights could result in misleading conclusions.  For example, the estimates from the random

statement yield biased estimates of the intraclass correlation and the estimates from the repeated

statement could bias conclusions about the proportion of variability explained by the predictors.

We do not explore standard errors with these estimates because they would obviously be

distorted by the estimates of the variance components.

Table D.6.—Comparison of Estimates for U.S. Grade 8 Example

PROC MIXED
PMLE Repeated, MLE Random, MLE

Intercept -351.67 -350.60 -431.90
Within Class Predictors
(Group Mean Centered)
Number of books 7.93 7.93 7.93
Computer present 4.35 4.35 4.35
Father present 1.73 1.73 1.73
Press 9.55 9.55 9.55
Age -14.43 -14.43 -14.43
Age2 -6.86 -6.86 -6.86
Between Classroom
Predictors (Group Means)
Number of books 45.48 45.43 46.54
Computer present 37.23 37.22 42.26
Father present 90.29 90.33 96.85
Press 43.20 43.14 58.58
Age 33.90 33.86 34.21
Age2 -149.38 -149.78 -106.05

Variance Components
τ (between) 766.16 1222.89 747.84
σ2 (within) 4570.39 6765.85 6743.24
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Weights and the HLM Software

The HLM software (Bryk, Raudenbush and Congdon, 1996) also fits multilevel or

hierarchical linear models.  This software also allows users to conduct weighted analysis using

sampling or design weights.  The HLM software provides users with numerous options for

conducting weighted analyses.  See Bryk, Raudenbush and Congdon (1996) for details.  We

explored various combinations of the weighting options and found that none of the methods

returned the PMLEs for our TIMSS example.  The estimates were sensitive to standardizing the

weights, and some combinations of estimates do agree with estimates produced by SAS PROC

MIXED with the random statement.   The HLM documentation does not provide explicit details

on the likelihood being maximized under the various weighting methods, so we cannot determine

exactly how all estimates will compare to the PMLE.  However, we can conclude that in general

HLM does not return the PMLE and that we cannot assume that the HLM estimates share the

properties of the PMLE.18

Summary

Multilevel modeling is a natural approach to analyze of data gathered through a complex

multistage sampling design, but using weights to address differences in sampling probabilities

can be problematic.  Unweighted estimates may be biased, but the weighting options in SAS and

HLM do not necessarily provide the desired pseudo-maximum likelihood (PMLE) estimates

under many conditions.  In the case of SAS, the differences in estimates result from differences

between the likelihood maximized by the PROC MIXED estimates and the likelihood

maximized by the PMLEs.  The properties of the PROC MIXED estimators are unknown but we

cannot assume that they share the properties of the PMLE.

The simplest and probably most common use of weights--applying weights without

standardization – can yield estimates that are substantially different from the PMLE.  This is

shown clearly by the between-classroom coefficients for press and age2 and the variance

components in Table D.5 above.  For example, the estimate of τ using the repeated statement

differed from the PMLE estimate in that case by 60 percent, and the estimate of σ2 differed by 48

                                                
18 The default weighting scheme in the MLWIN software is equivalent to PROC MIXED with standardized
weights and the repeated statement.  See the paper at http://www.ioe.ac.uk/mlwin/weights.pdf.

http://www.ioe.ac.uk/mlwin/weights.pdf.
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percent.  The use of the random statement resulted in an estimate of τ that was much closer, but

the estimate of σ2 still differed from the PMLE by 48 percent.

The simple expedient of standardizing the weights such that the sum of the standardized

weights equals the number of observations greatly reduced these problems in our example, but it

did not eliminate them.  This can be seen from Table D.4 above, and in particular by comparing

Table D.4 (which reflects standardized weights) to Table D.5 (which reflects unstandardized

weights).  PROC MIXED with the random statement and MLE estimation provided two

estimates of level-two parameters that differed substantially from PMLE.  For example, the

estimate for mean press differed by 36 percent.  In this particular case, PROC MIXED with the

repeated statement and MLE estimation produced parameter estimates very close to PMLE, but

the estimate of τ differed by about 8 percent.  We expect that in general when weights vary

among classrooms, for random intercept models weighted estimates from PROC MIXED with

the repeated statement will be preferable to those from PROC MIXED with the random

statement.  However, the default standard errors should not be used.  Jackknifing or an

alternative (e.g., linearization as discussed in Pfeffermann et al., 1998) should be used.  Finally,

we did not explore situations where weights varied among students in the same classroom. We

do not expect that our findings will necessarily generalize to such situations, and readers should

not assume that PROC MIXED with the repeated statement will provide acceptable estimates for

such data.

For many cases with random intercepts models with constant weights within level 2 units,

estimate of both parameters and variance components that are consistent with PMLE can be

obtained by using SAS macros written for this project.  These macros are time-consuming when

jackknifing is required, as with TIMSS, but are fast otherwise.  The macro code is given in

Figure 1.

For this paper we relied on the PMLE because it is a principled approach which is

asymptotically optimal.  However, the PMLE might not be optimal for all analyses.  The small

sample properties of the various estimation methods are unknown and need to be explored. In

particular the PROC MIXED estimates might be less variable or have smaller small sample bias

then the PMLE.  In addition, for random intercept models with no covariates, the consistent and

unbiased method-of-moment estimators serve as alternatives to the PMLE that might also have

better small sample properties.  These alternatives account for estimation of the mean and its
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effect of the expected value of the sum-of-squares (SSB).  The consistent method-of-moment

estimator is sensitive to rescaling the weights, but the unbiased method-of-moment estimator is

invariant to the scale of the weights.
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Figure D.1.  SAS Macro Used to Implement WIGLS.

%macro gls(y, xvars, dsname, class, intercpt, xlist=%str());
"

"
data _tmp03;

"
set _tmp;
"

   if _n_ = 1 then set sigma;
   array vars &y &xvars &intercpt;
   array avars _y &xlist &intercpt;
   lambda = sigma2 / (_nj * tau2 + sigma2);
   do over vars;
      vars = vars - avars * (1 - sqrt(lambda) );
      end;
run;

proc reg data=_tmp03 noprint outest=beta;
   model &y = &intercpt &xvars / noint;
   weight _wgt;
   output out=_tmp03 residual=_resid;
run;

proc summary data=_tmp03 nway;
   class &class;
   var _resid;
   output out=_tmp04(keep=&class _rbar) mean=_rbar;
run;

data _tmp03;
   merge _tmp03 _tmp04;
   by &class;
   _resid = _resid - _rbar * (1 - sqrt(lambda)) ;
run;

%mend;

%macro igls(y, xvars, dsname, class, weight=1,
            maxiter=500, intercpt=_intcpt);

%let nx = 1;
%let xvar = tmp;
%let xlist = %str();
%do %until(&nx = 0);
    %if %scan(&xvars, &nx) ^= %str() %then %do;
        %let xlist = &xlist _x&nx ;
        %let nx = %eval(&nx + 1);
        %end;
    %else %let nx = 0;
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%end;

%put &xlist;
%if &intercpt ^= _intcpt %then %let intercpt = %str();

data _tmp;
   set &dsname;
   _wgt = &weight;
   _intcpt = 1;
run;

proc means data=_tmp;
   var _wgt houwgt;
run;

proc summary data=_tmp nway;
   class &class;
   var &y &xvars;
   output out=_tmp02(keep=&class _y &xlist _freq_) mean=_y &xlist ;
run;

data _tmp;
   merge _tmp _tmp02(rename=(_freq_=_nj));
   by &class;
run;

data sigma;
   sigma2 = 1;
   tau2 = 0;
   output;
run;

**Iteration 0 betas **;

%gls(&y, &xvars, &dsname, &class, &intercpt, xlist=&xlist)

data newest;
   merge sigma(keep=sigma2 tau2)
         beta(keep=&intercpt &xvars);
run;

proc transpose data=newest out=newest;
   var sigma2 tau2 &intercpt &xvars;
run;

%let conv = 0;
%let i = 0;

**Loop**;

%do %while(&conv = 0);

data oldest;
   set newest;
run;

proc summary data=_tmp03 nway;
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   class &class;
   var _resid;
   id _wgt lambda _nj;
   output out=_s(keep=_rsum _rpr _wgt lambda _nj)
          sum=_rsum uss=_rpr;
run;

data _r;
   set _s;
   _r11 = _wgt * lambda**2 * _nj**2;
   _r12 = _wgt * lambda**2 * _nj;
   _r22 = _wgt * (lambda**2 + _nj - 1);
run;

proc summary data=_r;
   var _r11 _r12 _r22;
   output out=_r(keep= _r11 _r12 _r22) sum=;
run;

data _s;
   set _s;
   _rsum2 = (_rsum)**2;
   keep _rsum2 _rpr _wgt;
run;

proc summary data=_s;
   var _rsum2 _rpr;
   weight _wgt;
   output out=_s(keep=_rsum2 _rpr) sum=;
run;

data sigma;
   merge _r _s;
   detr = _r11*_r22 - _r12**2;
   tau2 = (_r22 * _rsum2 - _r12 * _rpr) / detr;
   sigma2 = (_r11 * _rpr - _r12 * _rsum2) / detr;
   if tau2 < 0 then put "*** NEGATIVE TAU2 ***";
   keep tau2 sigma2;
run;

*proc print data=sigma;

%gls(&y, &xvars, &dsname, &class, &intercpt, xlist=&xlist)

data newest;
   merge sigma(keep=sigma2 tau2)
         beta(keep=&intercpt &xvars);
   iter = &i;
run;

proc print data=newest;
   var iter &intercpt &xvars sigma2 tau2;
run;

proc transpose data=newest out=newest;
   var &intercpt &xvars sigma2 tau2;
run;
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data conv;
   merge newest oldest(rename=(col1=old));
   diff = abs(col1 - old);
run;

proc summary data=conv;
   var diff;
   output out=conv max=;
run;

data conv;
   set conv;
   if 1000000*diff < 1 then
      call symput("conv", 1);
   if &i = &maxiter then
      call symput("conv", 2);
run;

%put &conv;

%let i = %eval(&i + 1);

%end;

proc transpose data=newest out=finalest;
   var col1;
   id _name_;
run;

proc print data=finalest;
   var &intercpt &xvars sigma2 tau2;
   title "Final Estimates from IGSL Algorithm";
   title2 "Covergence Criteria = &conv";
run;

%mend;
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APPENDIX E.  DECOMPOSING THE VARIABILITY IN MULTILEVEL DATA

In this report we explore the predictive power of a small set of predictor variables for

explaining both the classroom level variability and the student within classroom level variability

of test scores.  For traditional linear regression models, which estimate the predictive power of

variables at a single level, the R2 statistic is used to describe the predictive power of covariates.

No single method exists, however, for extending the R2 statistic to multilevel analysis.

In this appendix we describe the approach used in our analyses for calculating the

multilevel R2 statistic.  As shown below, different methods for calculating this statistic produce

slightly different results.  However, these differences are small enough that our main findings are

insensitive to the R2 statistic we chose.  We nonetheless present this description of the method

we chose for two reasons.  First, the careful reader will notice that our unmodeled

decompositions of variance (that is, the decomposition of score variance into within- and

between-classroom components, taking no predictors into account) do not precisely match the

decompositions we present along with our multilevel models.  This Appendix explains the

reasons for those discrepancies.  Second, we believe that our method has merit because it

provides a means of decomposing the variability into between and within classroom variability

and then decomposing each of these sources of variability into variability modeled by the

predictors and residual error.  Other methods do not provide a complete decomposition of the

variability.

The R2 statistic in single-level linear models

In traditional, single-level linear models, in which error is assumed to be homoscedastic

and independent, the R2 statistic can be viewed from many perspectives.  The R2 statistic is the

square of the sample correlation between the predicted and the observed values. The R2 statistic

is also the ratio of the sum-of-squares due to regression or model sum-of-squares (MSS) to the

total sum-of-squares (TSS), R2 = MSS/TSS.  If the sample size equals n, then the sum-of-squares

due to regression is n-1 times the sample variance of the predicted values (the ŷ ’s), and total

sum-of-squares is n-1 times the sample variance in the observed y values.  Equivalently the R2

statistic equals 1-RSS/TSS, where the RSS is the sum of the squared residuals, i.e., the residual

sum-of-squares.  See Weisberg (1985) for an introduction to this development of the R2 statistic.

The R2 statistic can also be seen as the proportional reduction in prediction error that results from
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using covariates to predict the outcome.  The mean square prediction error for predicting y with

no covariates is the variance of y.  The mean square prediction error for predicting y with the best

linear predictor (best implies minimization of the squared prediction error) based on the

covariates x is the Var(y –x'β).  Thus the proportional reduction in mean squared prediction error

is

( ) ( )
( )

( )
( )y

xy

y

xyy

Var

Var
1

Var

VarVar β′−
−=

β′−−
=θ (1)

If we estimate Var(y –x'β) with RSS/(n-1) and Var(y) with TSS/(n-1), then R2 statistic is an

estimate of θ.  See Snijders and Bosker (1994) for details on this explication of R2.

R2 statistics in multilevel models

Defining variability in a multilevel model is much more complex.  We first must define

the variability between classrooms and the variability within classrooms. Let yij denote the test

score for the ith (i=1, ..., mj) student from the jth classroom (j=1,...,n).  Let zj be a vector of

classroom level predictors for students from the jth classroom and let xij be a vector of student

level predictors, 0=∑i ijx .  Assuming a random intercepts model,

yij = µj + x'ijγ + ε ij, (2a)

µj = z'jβ + ηj, (2b)

where Var(ε ij) = σ2, the Var(µj) = τ and ε ij and ηj are independent and independent of the

predictors.  Var(yij) = Var(yij- µj) + Var(µj) which is the natural decomposition of the variance of y

into variance between classrooms Var(µj) and variance within Var(yij- µj).  Thus, to create

statistics analogous to R2, ideally we would like to decompose the sample variability, i.e.,

( )1−MTSS , into ( ) ( )1
2

−−= ∑ Myyv ij
**

ijw  and ( ) ( )12 −∑ µ−µ= Mnv j jjb , where yij* = yij- µj,

∑= j jmM and *y  and µ  denote the respective sample means.  We would then decompose vw

and vb into modeled and residual variability using methods analogous to those for linear
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regression.  However, we do not directly observe the µj's, and so we cannot decompose the

variability directly.

Instead, we decompose the conditional expected value of TSS, conditioning on the

observed values of x and z.

( ) ( )( )
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Because ( ) ( ) ( ) ( )( )∑ β′−−β′+∑−=− ⋅⋅j jjjjjb zzzzmMmMôz,x|vEM 21 and

( ) ( ) ( ) ∑ γ′γ′+−σ=− j,i ijijw xxMz,x|vEM 11 2 , we can decompose E(TSS | x, z) into a

"between" classroom component, ( ) ( )( )∑ β′−−β′+∑− ⋅⋅j jjjjj zzzzmMmMô 2 , and a "within"

classroom component, ( ) ∑ γ′γ′+−σ j,i ijij xxM 12 .  We estimate E(TSS | x, z) and the between

and within components using the estimates of τ, σ2, β and γ found by fitting the model given in

(2).  We denote the resulting estimate of E(TSS | x, z)  by ETSS, and the estimates of the

between and within components by BSS and WSS, respectively.

The percent of total variability in scores that is between classrooms is defined as 100 x

BSS/ETSS and the percent of variability that is within classrooms is defined as 100 x WSS/ETSS.

We also define the percent of between classroom variability modeled by the classroom level

predictors (zj's) as ( )( ) BSSˆzzzzˆ
jj β

′
∑ −−β′× ⋅⋅100 .  We estimate the percent of within

classroom variability explained by the within classroom predictors (xij's) using an analogous

formula.

The percent of variability explained by a single covariate at either level also can be

estimated by this approach.  For example, to determine the variability explained by a classroom

level predictor, z, we use standard linear model results to determine the contribution of single

predictor to the model sum-of-squares ( )( ) β′−∑ −β′ ˆzzzzˆ
.ji .j .  We can use this method to find
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the full contribution of the predictor, i.e., the proportion of variability explained when this

predictor is "entered into the model first," or the additional contribution of the predictor after

controlling for other covariates i.e., the proportion of variability explained when this predictor is

"entered into the model last."

Although we developed our estimates of the percent of variability explained as an

approximation to the decomposition of the sample variability in the yij's, ETSS, BSS and WSS can

also be viewed estimates of the Var(yij), Var(µj) and Var(yij- µj) respectively.  Therefore our

method can be viewed as an approximate decomposition of the variance in the yij's or as a

measure of the relative prediction error in predicting either the µj's or the yij- µj's.

Within and between classroom variability are not invariant to the predictors included in

the model.  Our method for decomposing the variability in scores is conditional on a given set of

predictors.  The percent of variability within or between classrooms is defined conditionally on

the within and between predictors in the full model.  In addition the proportion of variability

explained at either level of the decomposition is conditional on the full set of predictors we are

considering.

Such conditioning is necessary because between and within variance and variability

depend on the within classroom level covariates in the model.  For example, let's suppose that

instead of fitting model (2) we consider the reduced model:

yij = µj* +  ε ij*, (4a)

µj* = µ0 + ηi*. (4b)

where the within classroom variance is Var(ε ij*) = σ*2 and the between classroom variance is

Var(ηj*) = τ*.  Note that we use the asterisk (*) notation to distinguish the parameters of model

(4) from their counterparts in model (2).  The relationship between the parameters in the two

models is described in detail below.  Model (4) is perfectly reasonable.  This is the model we

consider if we want to obtain the decomposition of variance into between and within classrooms

irrespective of any covariates, for example, the decomposition given Table 3 of the main report.

If models (2) and (4) are both valid models for the same joint distribution of the yij's and

the predictors, then the ε ij*'s and the ηj*'s must incorporate the γ'zj's and the β'xij's.  Furthermore,
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the variance components for model (4)--σ*2 and τ*--are formally related to σ2, τ, the variance

components from model (2).  (To simplify the following presentation, we assume  mj = m and

that the zj's and xij's are scalars.  We will also assume that the zj's equal the classroom mean of

variables uij's and that xij= uij- zj.  The results are not sensitive to these assumptions, but these

simplifications make the presentation much clearer.)  Let vx and vz denote the variance of the xij's

and zj's respectively.  Because the xij's sum to zero within each classroom, the Cov(xij, xij' ) = -

vz/(m-1).  Given models (2) and (4), the marginal variance and covariance of the yij's satisfy

Var(yij) = β2vx + τ + γ2vz + σ2 = τ* + σ*2 (5a)

Cov(yij, yi'j ) = β2vx + τ - γ2vz/(m-1) = τ*, i ≠ i', (5b)

and, therefore, σ*2 = mγ2vz/(m-1) + σ2.  However, based on model (2) we define the between

variance as β2vx + τ and the within variance as γ2vz + σ2.  Thus, the variance components of

marginal model (4) do not equal the total between and within variance that we would like to

explore.  In particular, τ* is less than the between variance and σ*2 is greater than the within

variance.  The ratio of β2vx to τ* is greater than the ratio of β2vx to β2vx + τ or alternatively 1-τ /τ*

is greater than 1-τ /(β2vx + τ ).  See Snijders and Bosker (1994) for details on the relationship of

the variance components (and corresponding estimates) among models with different sets of

predictors.

The difference between τ* and β2vx + τ is demonstrated by the result in Tables 3 and 13

of the main report. For Table D.3 we fit model (4) and found that the between classroom

variability (τ*) accounted for 42 percent of the total variability in U.S. Population 2 math scores.

For Table 13 we fit model (2) using the covariates given in Table 12 and found that, on the basis

of our decomposition of ETSS, the between classroom variability accounted for 41 percent of the

total variability.

Although these differences are small, they resulted in counterintuitive estimates when we

attempted to decompose the variability using the methods suggested by Bryk and Raudenbush

(1992).  Let *τ̂  denote the estimate of τ* from model (4) and τ̂  denote the estimate of τ from

fitting model (2).  Bryk and Raudenbush suggest using ( )*ˆˆ ττ−× 1100  to estimate the percent of

between class variability explained by the between class predictors.  When we used this method
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for the TIMSS data, we found that, as demonstrated above, adding within class predictors to our

model decreased the percent of between class variability modeled by the between class

predictors.  Therefore, the Bryk and Raudenbush approach can not be used to separately

decompose the between and within variability into modeled and residual components.   Changes

to the within-classrooms predictors change both the proportion of the within classroom and the

proportion of between classroom variability that is modeled by the predictors.

Results are not qualitatively sensitive to the definition of R2

We compared our method for defining the percent of variability modeled by predictors to

two alternative methods.  The first alternative is the method of Bryk and Raudenbush (1992) that

was discussed above.  We call this the HLM method.  As discussed, changes to the within class

predictors affect the proportion of between variance that is modeled by the predictors.  For Table

E.1, our HLM estimate of between class variance modeled by between class predictors is always

conditional on the full set of within class predictors.  Our HLM estimate of the proportion of

within class variance explained by a single predictor (the variable father present in our example)

ignores the effects on the between classroom variance.  We ignore the effect that changes to

within class predictors have on the between classroom variance component only to allow for

comparison.  We are not suggesting that this approach be used in general as a means of forcing

the HLM method to produce a decomposition of variability.

The second alternative method we use for our comparison is the ANOVA decomposition.

The ANOVA method decomposes ( )2∑ −= ij ij yyTSS into ( )2∑ −= ⋅j jj yynSSB  and

( )2∑ −= ⋅ij jij yySSR  and then decomposes each of these into modeled and residual sum-of-

squares.  The results of the ANOVA method are equivalent to fitting a model on classroom level

means and separate model to the within classroom deviations from the mean.  Although the

ANOVA method is straightforward, the method will tend to overestimate the between classroom

variance because jjjy ⋅⋅ ε+µ=  and ( ) ( )∑ µ−µ>∑ −= ⋅ j jjj jj nyynSSB
22

.  However, these

differences will tend to be small provided the sample size within each classroom is at least

moderate.

Table E.1 compares the three methods for estimating R2 statistics for multilevel data.

The data are the U.S. Population 2 math scores.  The model includes as covariates: the number of
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books; computer present; father present and press.  The model includes each predictor as both a

classroom level (classroom mean) and student within classroom level (group mean centered)

variable.  The table gives the percent of variance between classrooms, the percent of the between

classroom variance explained by the classroom level predictors (the z's) and percent of the within

classroom variance explained by the student level predictors (the x 's).  The table also gives the

percent of between and within variance modeled by the father present variable.

The three methods give very similar results.  Each method estimates that roughly 43

percent of the total variability is between classrooms and about 57 percent is within classroom.

All three methods estimate that somewhat more than 70 percent of the between classroom

variability is explained by classroom level predictors (the estimates range from 71 to 76 percent),

while a little less than 3 percent of the within classroom variability is explained by student level

variables.  Also, all methods provide similar estimates of the percent of variability modeled by

the father present variable.

The slight differences in the estimates are in the expected directions.  As noted above, the

ANOVA method includes the average within classroom residual error in the between class

variability.  Hence the ANOVA method estimates the share of the variance that is between

classrooms is larger than the estimate produced by the other methods.  Because the additional

residual error in the ANOVA method estimate of between class variability cannot be explained

by between class predictors, the ANOVA method estimates the smallest percent of between class

variability modeled by the z's.   Similarly, compared to the ETSS method, the ANOVA method

estimates a smaller share of variability is within classrooms and a larger share of that variability

is modeled by the x 's.  The HLM method is something of a compromise between our ETSS

method and the ANOVA method.  The HLM methods gives estimates that are very similar to the

ETSS method for the between classroom variability and nearly identical to the ANOVA method

for within classroom variability.  However, as discussed above the HLM method does not

provide estimates that truly decompose the total variability.
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Table E.1.—Three Methods of Estimating Percent of Variability Modeled for U.S. Population 2 Mathematics
Scores: 1995

Source ETSS HLM ANOVA

Between Classrooms

Percent of Total  41.97  42.93  44.71

Percent of Between for:

   All Four Predictors  74.96  75.87  71.03

   Father Present

      Total  33.45  32.61  31.65

      Additional  7.56  7.79  7.15

Within Classrooms

Percent of Total 58.03 57.07 55.29

Percent of Within for:  2.62  2.76  2.76

   All Four Predictors  0.05  0.05  0.05

   Father Present

      Total  0.18  0.19  0.19

      Additional  0.05  0.05  0.05

Summary

Determining the percent of variability explained at the different levels of a multilevel

model is complicated by the fact that we do not directly observe the variability at the various

levels of the data.  As an alternative we decompose the expected total sum-of-squares.  Using

this decomposition we can decompose the total variability (as measured by the expected total

sum-of-squares) into variability within and between classrooms and we can then decompose the

variability within and between into modeled and residual variability.

Because the total variability between classrooms depends on the within classroom

predictors in the model, our decomposition is conditional on the full set of predictors of interest.

For decomposing the variance of a fitted model, this method provides a meaningful description

of the size of the various sources of variability.  The decomposition of expected total sum-of-

squares would not be appropriate for other uses of an R2 statistic such as model comparison. In
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addition, because the total between classroom variability depends on the within classroom

predictors, a model fit with no predictors does not provide the correct total between and within

variability for determining percent of between or within variance modeled by a set of predictors.

The result is that the percent of variability between classrooms differs when estimated using our

decomposition of expected total sum-of-squares and when estimated using a reduced model with

no covariates.  The differences are extremely small, as illustrated by Tables 3 and 13 of the body

of this report.

Because we cannot directly observe the variability at each level of the model, different

methods for approximating a decomposition of the variability exist.  We have demonstrated a

method that has clear advantages compared to other, more common approaches but have also

shown that for the TIMSS data, these differences are too small to alter our findings qualitatively.
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APPENDIX F: PARTITIONING WEIGHTS FOR INTERMEDIATE STATISTICS

When an analyst calculates statistics that subsume all levels of a of a multi-stage

sample such as TIMSS, the application of sample weights is often straightforward.  The

database includes a weight (in some databases, numerous weights) that take into account

all levels of sampling and non-response down to the level of the individual student, and

applying that weight will provide appropriate estimates for statistics such as national

means.

In many cases, however, analysts will need to calculate statistics at lower levels of

aggregation, which we call here intermediate statistics, and then aggregate those statistics

further.  An example would be calculating the national distribution of classroom means.

In such cases, the use of weights can be more complex, with different weights applied to

different stages of the calculations.  The process of using weights to create weighted

estimates of weighted intermediate statistics is illustrated here with the process of

obtaining a weighted distribution of weighted classroom or school means from TIMSS

data.

TIMSS is a three-stage survey that samples schools, then classrooms within

schools, and finally students within classrooms.  In some instances, units are sampled

with certainty or with equal probabilities, but that does not affect the generality of the

points made here.  The TIMSS student weight reflects sampling probabilities at all three

levels, but non-response factors only at the level of schools and students:

)()( 11111 −−−−− ⋅⋅⋅⋅= ∏ ijkijkiji
ijk

iijk rpprpw .    (1)

where

p is the probability of selection

r is the probability of response or participation, given selection

i is schools

j is classrooms

k is students

In equation (1), factors are grouped into levels of sampling with parentheses.  All of these

factors are included separately in the TIMSS database (see Gonzalez, Smith, et al., 1997,

pp. 3-15 to 3-19).
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Typically (as in the TIMSS documentation), weights are labeled in keeping with

the stages of sampling, that is, starting with the highest level of sampling and working

down only as far as needed.  For example, in TIMSS, the school weight (SCHWGT) is

the first pair of factors in (1), corresponding to the inverses of the probabilities of

selection and response at the first stage of sampling:

)( 11 −−
•• ⋅= ∏ i

i
ii rpw . (2)

This labeling is ambiguous.  For analytical purposes, it would be clearer to call this

fractional weight the between-school weight because it is used to weight school-level

statistics to obtain correct between-school statistics.  The between-classroom weight (not

separately noted in the TIMSS documentation) would simply multiply the between-

school weight by the inverse of the probability of sampling a classroom within a school:

111 )( −−−
• ⋅⋅= ∏ iji

ij
iij prpw . (3)

Logically, the weight needed to calculate intermediate statistics at the level of the

classroom, the within-classroom weight, comprises only the final two factors in (1), that

is, the inverses of the probability of being selected from within the classroom and the

probability of responding if selected:

)( 11
)(

−− ⋅= ∏ ijkijk
ijk

ijkc rpw . (4)

The c in the subscript denotes the classroom level.  The product of the within-classroom

weight (4) and the between-classroom weight (3) is the total student weight (1).

Similarly, the within-school weight is obtained by multiplying the within-classroom

weight by the inverse of the probability of sampling a classroom within a school:

 )( 111
)(

−−− ⋅⋅= ∏ ijkijk
ijk

ijijks rppw . (5)

Again, the product of the within- and between-school weights (5 and 2) is the total

student weight (1).

Although it is useful to conceptualize weights in these terms, it is typically

unnecessary in practice to partition weights in this fashion to calculate the intermediate

statistics.  For example, the between school weight is a constant for any school and thus

does not influence school-level statistics such as means.  As noted above, the student
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weight can be expressed as the product of the between-school and within-school

components:

ijksiijkijkij
ijk

iijk wwrppww
)(

111 )( ⋅=⋅⋅= ••
−−−

•• ∏ .

The weighted mean of variable X in school i would therefore be:
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Thus, the weighted school mean is calculated equivalently with either the total student

weights or the within-school weights.

To calculate distributional statistics from weighted intermediate statistics (e.g.,

distributional statistics where schools rather than students are the unit of analysis),

however, does require partitioning the total weight into within- and between-unit

components.  When calculating, for example, the weighted mean of school means, the

appropriate weight to apply to the school means is the between-school weight (2) above,

i.e.,  SCHWGT in the TIMSS database.  The total student weight (1) is not equivalent to

the weighted sum of school mean weights because the within-school weighting

components (5) need not be constant within a school.  To calculate the weighted mean of

classroom means, one would need to compute a between-classroom weight (4) by

multiplying the between-school weight SCHWGT by 1−
ijp , labeled WGTFAC2 in the

TIMSS database (Gonzalez, Smith, et al., 1997, p. 3-15).

Depending on the inferences the statistic is intended to support, using the

between-unit weight may not be sufficient.  For example, suppose that one wanted the

national weighted mean and standard deviations of weighted school means (as in Table 2

above).  If one wants the weighted mean of means to be equal to the weighted grand
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mean calculated with student level weights (i.e., equal to the national mean in the

published TIMSS reports), weighting by the between-school weights would not be

sufficient, because taking the mean at the school level removes the information about the

relative size of the schools.  Accordingly, it is necessary to adjust the between-school

weights by multiplying them by the sum of the within-school weights.  This yields the

following adjusted between-school weight:

∑∏ ⋅⋅= −−
••

jk
ijksi

i
ii wrpw )(

11 )(~ . (6)

This procedure was used for calculating simple statistics in this report.  For

example, the means and standard deviations of classroom means were calculated first by

using the within-school weights (5) to calculate the means for each school and then the

adjusted between-school weights (6) to calculate the means and standard deviations of

these weighted means.

Reference
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Database: Primary and Middle School Years.  Chestnut Hill, MA: TIMSS

International Study Center, Boston College.



National Center for Education Statistics

left

Go to Electronic Catalog

Go to Students' Classroom

Go to Survey and Program
Areas

Go to Encyclopedia of ED
Stats

Go to Quick Tables and
Figures

Go to Global Locator

Go to FastFacts

bottom

blank

Description of NCES
Visit the U.S.
Department of

Education

 

Web Version of Education Statistics Quarterly (Spring 2001) Now
Available

Inside the Stats!
Percentage of 1992 high

school graduates who
enrolled in a 4-year

institution within two years
of graduation, by parent's

level of education.



Percentage of 1992 high
school graduates who enrolled
in a 4-year institution within two
years of graduation, by
parent's level of education.

Did You Know?
In 1998-99, on average, faculty in 4-year postsecondary
schools earned over $9,000 more per year than those in
2-year institutions. ( NCES Reference)

Text Only Privacy & Security Policy

National Center for Education Statistics
map 1990 K Street, NW,   Washington, DC 20006,   USA,   Phone: (202) 502-7300  

National Center for Education Statistics (NCES) Home Page, a part of the U.S. Department of Education

http://nces.ed.gov/ [6/19/2001 6:00:43 PM]

http://nces.ed.gov/search/search.html
http://nces.ed.gov/pubs2001/quarterly/winter/
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2001072
http://nces.ed.gov/nceskids
http://nces.ed.gov/surveys
http://nces.ed.gov/edstats
http://nces.ed.gov/quicktables
http://nces.ed.gov/globallocator
http://nces.ed.gov/fastfacts
http://www.ed.gov/
http://nces.ed.gov/pubs2001/quarterly/spring/
http://nces.ed.gov/pubs2001/quarterly/spring/
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2001072
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2001072
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2001072
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2001072
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2001072
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2001072
http://nces.ed.gov/pubs2001/quarterly/winter/postsecondary/p_section1.html
http://nces.ed.gov/text.asp
http://nces.ed.gov/help/privacy.shtml
http://nces.ed.gov/help/map.shtml


Search Tools and Related Information
Conduct customized searches to locate NCES publications and data products. Once

located, browse the content of publications or download files.

 Search for Products by NCES #:

    Enter NCES #:      (e.g. 2001017 or 98293)
 Search on one or more of the following fields:

    Enter Searchword(s): (time default = products released within last 5 years)

1.  by 

2.    Help on Area

3.    Help on Type of Product

4. Release Date:   Month   Year  

  

 Popular NCES Reports NEW!  Data Access Tools

 How to Order NCES Products

Education Publications Center (ED Pubs),1.  

Government Printing Office (GPO), and2.  

Federal Depository Libraries3.  

 Restricted Data Licenses - Access restricted data from NCES surveys.

 News Flash Subscription Service - Receive e-mail alerts about new NCES Publications and
Data Products.

 Educational Resources Information Center (ERIC) and Other Clearinghouses - ERIC,
funded by the U.S. Department of Education, is a nationwide information network that
acquires, catalogs, summarizes, and provides access to education information from all
sources. All ED publications are included in its inventory.

Text Only

Electronic Catalog of NCES Products (National Center for Education Statistics). Publications and data products.

http://nces.ed.gov/pubsearch/ (1 of 2) [6/19/2001 6:03:09 PM]

http://nces.ed.gov/pubsearch/wnew.asp?1
http://nces.ed.gov/pubsearch/wnew.asp?2
http://nces.ed.gov/pubsearch/Subindx.asp
http://nces.ed.gov/pubsearch/surveylist.asp
http://nces.ed.gov/surveys
http://nces.ed.gov/pubsearch/pubtypes.asp
http://nces.ed.gov/pubsearch/majorpub.asp
http://nces.ed.gov/pubsearch/onlinedata.asp
http://nces.ed.gov/help/orderinfo.shtml
http://www.ed.gov/pubs/edpubs.html
http://nces.ed.gov/transfer.asp?sec=true&location=orders.access.gpo.gov/su_docs/sale/index.html
http://nces.ed.gov/transfer.asp?location=www.gpo.gov/su_docs/locators/findlibs/index.html
http://nces.ed.gov/pubsearch/licenses.asp
http://nces.ed.gov/newsflash/index.asp?owner=MIA
http://www.ed.gov/EdRes/EdFed/ERIC.html
http://nces.ed.gov/pubsearch/textindex.asp


leftNCES
Home

US
Department

of
Education

Home

Search
NCES

NCES
Electronic
Catalog

Survey and
Program

Areas

NCES
Help

NCES
News Flash
Subscription

Service

E-mail
NCES

WebMaster

NCES
Site
Map

right

Electronic Catalog of NCES Products (National Center for Education Statistics). Publications and data products.

http://nces.ed.gov/pubsearch/ (2 of 2) [6/19/2001 6:03:09 PM]

http://nces.ed.gov/index.html
http://www.ed.gov/
http://nces.ed.gov/search/search.html
http://nces.ed.gov/pubsearch/index.asp
http://nces.ed.gov/surveys
http://nces.ed.gov/help/
http://nces.ed.gov/newsflash/index.asp
http://nces.ed.gov/webmail
http://nces.ed.gov/help/sitemap.asp

	Using TIMSS to Analyze Correlates of Performance Variation in Mathematics
	Foreword
	Preface
	Table of Contents
	List of Figures
	List of Tables

	Executive Summary
	Acknowledgements
	Introduction
	Methods
	Student-Level Distribution of Performance in TIMMS
	Simple Decomposition of Variance in Seven Countries
	Multilevel Models of Performance Variation
	Conclusions
	References
	Appendix A. Description of Variables
	Appendix B. Selecting a Model in the U.S.
	Appendix C. Selecting a Model in France
	Appendix D. Weighting Multilevel Models
	Appendix E. Decomposing the Variability in Multilevel Data
	Appendix F. Partitioning Weights for Intermediate Statistics
	ed.gov
	National Center for Education Statistics (NCES) Home Page, a part of the U.S. Department of Education
	Electronic Catalog of NCES Products (National Center for Education Statistics). Publications and data products.


	CFFNEHKBHBEICDLGBNNDBHDOEJLMIGGA: 
	form1: 
	x: 
	f1: [/index.html]

	f2: 


	JJBPEFEIGPNDMOAMOLKFIHMGHENIHHNO: 
	form1: 
	x: 
	f1: ncesnum
	f2: any
	f3: type
	f4: GE
	f5: 01
	f6: 1980
	f7: 

	f8: 

	form2: 
	x: 
	f1: 
	f2: [title]
	f3: [any]
	f4: [type]
	f5: [GE]
	f6: [01]
	f7: [1996]

	f8: 
	f9: 




